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Abstract
Background: Probiotic microorganisms are receiving increasing interest for use in the prevention, treatment, or dietary
management of certain diseases, including antibiotic-associated diarrhea (AAD). Clostridium difficile is the most common cause of
AAD and the resulting C. difficile – mediated infection (CDI), is potentially deadly. C. difficile associated diarrhea (CDAD) is
manifested by severe inflammation and colitis, mostly due to the release of two exotoxins by C. difficile causing destruction of
epithelial cells in the intestine. The aim of this study was to determine the effect of probiotic bacteria Lactobacillus delbrueckii ssp.
bulgaricus B-30892 (LDB B-30892) on C. difficile-mediated cytotoxicity using Caco-2 cells as a model.

Methods: Experiments were carried out to test if the cytotoxicity induced by C. difficile-conditioned-medium on Caco-2 cells
can be altered by cell-free supernatant (CFS) from LDB B-30892 in different dilutions (1:2 to 1:2048). In a similar experimental
setup, comparative evaluations of other probiotic strains were made by contrasting the results from these strains with the
results from LDB B-30892, specifically the ability to affect C. difficile induced cytotoxicity on Caco-2 monolayers. Adhesion assays
followed by quantitative analysis by Giemsa staining were conducted to test if the CFSs from LDB B-30892 and other probiotic
test strains have the capability to alter the adhesion of C. difficile to the Caco-2 monolayer. Experiments were also performed
to evaluate if LDB B-30892 or its released components have any bactericidal effect on C. difficile.

Results and discussion: Co-culturing of LDB B-30892 with C. difficile inhibited the C. difficile-mediated cytotoxicity on Caco-
2 cells. When CFS from LDB B-30892-C. difficile co-culture was administered (up to a dilution of 1:16) on Caco-2 monolayer,
there were no signs of cytotoxicity. When CFS from separately grown LDB B-30892 was mixed with the cell-free toxin
preparation (CFT) of separately cultured C. difficile, the LDB B-30892 CFS was inhibitory to C. difficile CFT-mediated cytotoxicity
at a ratio of 1:8 (LDB B-30892 CFS:C. difficile CFT). We failed to find any similar inhibition of C. difficile-mediated cytotoxicity
when other probiotic organisms were tested in parallel to LDB B-30892. Our data of cytotoxicity experiments suggest that LDB
B-30892 releases one or more bioactive component(s) into the CFS, which neutralizes the cytotoxicity induced by C. difficile,
probably by inactivating its toxin(s). Our data also indicate that CFS from LDB B-30892 reduced the adhesion of C. difficile by
81%, which is significantly (P <0.01) higher than all other probiotic organisms tested in this study.

Conclusion: This study reveals the very first findings that Lactobacillus delbrueckii ssp. bulgaricus B-30892 (LDB B-30892) can
eliminate C. difficile-mediated cytotoxicity, using Caco-2 cells as a model. The study also demonstrates that LDB B-30892 can
reduce the colonization of C. difficile cells in colorectal cells. More study is warranted to elucidate the specific mechanism of
action of such reduction of cytotoxicity and colonization.
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Background
Use of probiotic organisms to reduce and alleviate antibi-
otic-associated diarrhea (AAD) is receiving increasing
interest in recent years [1-3]. Clostridium difficile is respon-
sible for a potentially deadly bacterial infection and it is
the most common etiologic agent of AAD or more pre-
cisely, a C. difficile associated diarrhea or colitis (CDAD or
CDAC), resulting in severe diarrhea and inflammation
[4,5]. The principal pathogenic determinants of C. difficile
are two large exotoxins; A (TcdA) and B (TcdB), which are
implicated for the clinical symptoms [6]. Traditionally,
TcdA was considered to be the major component in elicit-
ing the disease. More recently an equally important role of
TcdB in pathogenesis has been demonstrated [6]. Cell
death or cytotoxicity induced by Tcds is initiated by the
glycosylation, followed by inactivation, of the small
GTPases, Rho, Rac and Cdc-42 causing perturbations in
the arrangement of actin cytoskeleton leading to cell
death via apoptosis [7,8]. Along with Rho-GTPase
dependent apoptosis event, Tcds are also reported to elicit
apoptotic cell death via caspase-dependent pathways
[7,9,10]. Disruption of the functionality of human and
animal epithelial cell barriers by Tcds is believed to be
caused by the above-mentioned mechanisms, where the
toxins cause dysfunction of tight junctions in intestinal
epithelia due to disaggregation of filamentous actin,
resulting in cell detachment and rounding [8,11]. Inflam-
matory events in the intestine are also implicated as hall-
marks of C. difficile infection (CDI) along with
cytotoxicity, apoptotic and necrotic cell death [7]. Produc-
tion of cytokines (interleukins 1–8, leukotrienes, hista-
mine, etc.) and other inflammatory mediators from cells
of the intestinal epithelial layer and lamina propria is trig-
gered when TcdA or TcdB or both bind to receptors on
intestinal epithelial cells [5,12-14]. The Tcds binding
event results in the infiltration and activation of polymor-
phonuclear neutrophils (PMNs) [14,15]. Severe damage
is done to villous enterocytes by PMN-derived inflamma-
tory mediators, which act on these epithelial cells causing
acute destruction and necrosis [14,15].

The incidence of CDI is increasing rapidly and is further
complicated by the emergence of a more virulent, drug-
resistant strain [4]. It is estimated that there are between
250,000 – 500,000 cases of CDI in the U.S. each year,
resulting in longer hospital stays and an estimated $1.1
billion in additional costs [16,17]. Current treatment of
CDAD, a regimen that has existed for the last 25 years,
includes metronidazole or oral vancomycin along with
discontinuation of the offending agent. Impaired coloni-
zation resistance frequently occurs following antibiotic
therapy in hospitalized patients [18]. Emergence of new
multi-drug resistant epidemic strains poses a great chal-
lenge to the effective treatment of CDI [19]. Along with
conventional antibiotic therapy, administration of probi-

otic organisms to manage CDAD is drawing increasing
attention [2]. Use of probiotic organisms such as Saccha-
romyces boulardii [20,21]; Lactobacillus plantarum 299v
[22,23]; Lactobacillus rhamnosus GG [24,25]; Lactobacillus
acidophilus and Bifidobacterium bifidum [26] in conjunction
with metronidazole or oral vancomycin therapy are
reported in cases of CDAD [19-21]. Similarly, several
reports of use of other probiotic organisms, individually
and in combination with other strains, can be found in
scientific reports in adult and infant AAD cases. These pro-
biotic therapies include the use of Lactobacillus rhamnosus
GG; Bacillus clausii; Bifidobacterium longum; Clostridium
butyricum MIYAIRI; Enterococcus faecium SF68; Lactobacillus
acidophilus; L. acidophilus and L. bulgaricus (Lactinex);
Lactobacillus acidophilus and Bifidobacterium longum; Lacto-
bacillus acidophilus and Bifidobacterium lactis; Bifidobacte-
rium lactis and Streptococcus thermophilus; Lactobacillus
sporogenes and fructo-oligosaccharide; Lactobacillus acido-
philus and Bifidobacterium infantis [reviewed and analyzed
in detail by McFarland, 2006 [27]]. The totality of evi-
dence in these reports emphasizes the increased attention
to probiotics and supports their inclusion as a choice of
therapy, along with or in parallel with conventional anti-
biotic regimens, to prevent AAD or CDAD.

In the present study, we evaluated the efficacy of Lactoba-
cillus delbrueckii ssp. bulgaricus B-30892, a probiotic bacte-
ria found to be effective in inflammatory bowel disease as
well as diarrhea, AAD, and CDAD [28,29], on C. difficile-
mediated cytotoxicity on human enterocyte-like Caco-2
cell model.

Methods
Bacterial Strains and Culture Conditions
Lactobacillus delbrueckii ssp. bulgaricus B-30892 (LDB B-
30892) was obtained from LacPro Industries, LLC, Fort
Wayne, Indiana and was routinely grown anaerobically in
Difco Lactobacilli MRS broth (Becton, Dickinson and
Company [BD], Sparks, MD) or on MRS agar (BD) at
37°C. Clostridium difficile strain 9689 (CD-9689), a cyto-
toxin-producing strain, was purchased from the American
Type Culture Collection (ATCC) and routinely grown
anaerobically in Difco Reinforced Clostridial Medium
(RCM; BD) or on RCM agar at 37°C. Six other commer-
cially available probiotic and conventional lactobacilli
strains; L. delbrueckii ssp. bulgaricus (LB-1 and LB-6), L. aci-
dophilus (LB-2 and LB-3), and L. casei (LB-4 and LB-5 were
isolated and biochemically characterized by API 50 CH
system (bioMérieux, Hazelwood, MO) (Table 1). These
lactobacillus cultures (LB-1 through LB-6, Table 1) were
grown in MRS medium under the same conditions as LDB
B-30892. In the present paper, Lactobacillus delbrueckii ssp.
bulgaricus B-30892 is mentioned as LDB or LDB B-30892,
C. difficile strain 9689 is mentioned as CD-9689 or CD
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and all other lactobacilli strains used were designated as
LB or LB-1 through LB-6.

Human Intestinal Cell Culture
The human intestinal epithelial cell line, Caco-2 (HTB-
37), was purchased from the ATTC and cultured in Dul-
becco's Modified Eagle medium (DMEM; Gibco, Invitro-
gen Corp.) with 20% fetal bovine serum (FBS). This cell
line has been well established as a model to study the
intestinal barrier function [30]. For the cytotoxicity assays,
Caco-2 cells were grown to confluency in 96-well cell cul-
ture plates (Falcon, BD) at 37°C in 7% CO2.

Cytotoxicity experiment
The effect of different lactobacilli on C. difficile induced
cytotoxicity on a Caco-2 cell monolayer was tested using
two groups of bacterial cell free supernatant (CFS) or bac-
terial conditioned medium (cell free) as described below:

CFS from co-culture
The bacterial strains were grown in 10 ml of the appropri-
ate broth, anaerobically, at 37°C for 72 h. Twenty-four
hours before the cytotoxicity experiment, one LDB B-
30892 culture was centrifuged and the resulting pellet was
resuspended into one C. difficile culture. Such lactobacilli
cultures when added to C. difficile culture and grown
together are designated as 'co-culture' in the present arti-
cle. All bacterial cultures, controls and the mixed LDB B-
30892/CD-9689 culture (LDB-CD co-culture), and mix-
ture of other lactobacilli/C. difficile cultures (LB-1/CD-
9689 through LB-6/CD-9689, Table 1, LB-CD co-culture)
were then incubated anaerobically at 37°C for an addi-
tional 24 h. In some experiments, LDB B-30892 was heat-
killed at 70°C for 45 min before centrifuging and resus-
pending in a CD-9689 culture. The CD-9689, LDB B-
30892, and mixed lactobacilli/C. difficile cultures
described above were centrifuged (10,000 g, 10 min, 5°C)
and the supernatants collected and filter-sterilized (0.45
μm pore size). Thus several cell free supernatants were
obtained from lactobacillus-clostridium co-cultures. The
cytotoxicity of these filter-sterilized media, cell-free toxin

preparation (CFT), and CFS containing lactobacilli 'fac-
tors' were tested on Caco-2 cultures as described below.

CFS mixture from individually grown cultures
In this case, we grew the lactobacilli (LDB and other LB-1
through LB-6) and C. difficile CD-9689 cultures individu-
ally under the conditions described above. All the differ-
ent cultures (lactobacilli and Clostridium) were centrifuged
(10,000 g, 10 min, 5°C) and the supernatants collected
and filter-sterilized (0.45 μm pore size). Thus we obtained
individual CFSs from all the eight bacterial cultures (Table
1). After this, CFS from LDB B-30892 (LDB-CFS) culture
was added in different ratio to the crude toxin preparation
from CD-9689 (CD-CFT) culture resulting in a cocktail of
LDB-CFS + CD-CFT and tested for Caco-2 cytotoxicity.
Similarly, the CFS obtained from six other commercially
available probiotic and conventional lactobacilli strains,
LB-1 through LB-6, designated as LB-CFS were mixed indi-
vidually with CD-CFT and tested for cytotoxicity.

On the day of the cytotoxicity assay, the cell culture
medium was removed from the Caco-2 monolayers and
replaced with fresh cell culture media or various dilutions
(1:2 through 1:2048 into DMEM, 20% FBS) of sterile
RCM, sterile MRS, or the cell free supernatants (CFS or
CFT) samples from various organisms (prepared as
described above, either by co-culturing or obtained from
separately grown cultures). The Caco-2 cultures were then
incubated for 24 h. Cytotoxicity effects were assessed
microscopically by examining the Caco-2 cell monolayers
in multiwall plates with an inverted microscope as
described below.

Photomicroscopic Analysis of Cytotoxic Effects
For photomicroscopy, similar cytotoxicity experiments as
described above were conducted, except the Caco-2 cells
were grown to confluency in Lab-Tek II Chamber Slide
Systems (Nalge Nunc International Corp., Naperville, IL).
Following treatment with toxin or antitoxin preparations
for 24 h, the monolayers were washed once with PBS (20
mM, pH 7.2), fixed with 10% formalin in PBS for 10 min,
the media chambers removed, and the slides were

Table 1: List of different lactobacilli and C. difficile strains or isolates used

Designation or Code Strain Source

LDB B-30892 L. delbrueckii ssp. bulgaricus B-30892 LacPro
LB-1 L. delbrueckii ssp. bulgaricus From commercial probiotic supplement
LB-2 L. acidophilus From commercial probiotic supplement
LB-3 L. acidophilus From Dr. A Bhunia, Purdue University
LB-4 L. casei From commercial probiotic dairy drink
LB-5 L. casei From Dr. A Bhunia, Purdue University
LB-6 L. delbrueckii ssp. bulgaricus From commercial yogurt
CD-9689 Clostridium difficile strain 9689 ATCC
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mounted with coverslips and Gel/Mount mounting
medium (Biomeda Corp., Foster City, CA). Microscopic
images were captured using a Leica DMRXA2 phase con-
trast microscope equipped with a Spot RTKE digital cam-
era and software.

Live-Dead Analysis using Fluorescence Microscopy
We deduced the efficacy of LDB B-30892 in protecting
Caco-2 cells from cytotoxic effect of CD-CFT, and com-
pared that with other lactobacilli by a live-dead assay
using two fluorescence dyes, propidium iodide (PI, red,
dead cell indicator) and acridine orange (AO, green, live
cell indicator), as described previously [31].

Briefly, a cell staining solution containing 20 μg/ml of AO
and 100 μg/ml PI (Sigma) was prepared in sterile de-ion-
ized water. The Caco-2 cells (exposed to toxins or anti-
toxin preparations, as described in previous sections) were
dislodged by trypsin treatment. Aliquots of 100 μl of cell
suspension (1 – 2 × 106/ml) were mixed with 100 μl of
staining solution and analyzed immediately with a fluo-
rescence microscope (Leica, model DMLB, Wetzlar, Ger-
many, with SPOT software, version 4.6.4.2, Diagnostic
Instruments, Sterling Heights, MI, USA), using green (for
AO) and red filters (for PI). The detection of live (L), and
dead (D) cells were done in the following manner, green
(live), red (necrotic), both by visual scoring on a hemacy-
tometer and by using image analysis software, SPOT, ver-
sion 4.6.4.2 (image acquisition) and ImageJ v1.38 (NIH,
USA) with "color counter" (v2001) and "color histogram"
plug-ins (v2007) to analyze the images.

Adhesion Assay
The goal of the adhesion assay was to investigate the abil-
ity of the cell free conditioned medium (CFSs) obtained
from LDB B-30892 and other lactobacilli to modulate the
adhesion of CD-9689 to the intestinal epithelial cell mon-
olayer in vitro. The experimental set-up for this was similar
to the detoxification experiment using Caco-2 cell as
model. The adhesion assay was done as described previ-
ously [32-34] with some modification. In short, Caco-2
cells (1.1 × 104 cells/ml) at the post-confluence stage were
seeded on Lab-Tek II Chamber Slide Systems (Nalge Nunc
International, USA). After incubation for 14 days at 37°C
in 7% CO2, the slides were washed with sterile PBS buffer
and the test bacterial suspension of CD-9689 (with multi-
plicity of infection of 100 C. difficile cells to one Caco-2
cell; the C. difficile suspension medium in this case was a
1:1 volume/volume RCM-lactobacilli CFS) was added to
each chamber with a Caco-2 monolayer. A 1:1 volume/
volume RCM-MRS (without any lactobacillus condition-
ing) served as the control. The chambered slides were
incubated at 37°C in 7% CO2 for 2 h. After incubation,
Caco-2 cells were washed four times with PBS and then
immersed in PBS for 30 s. Cells were immersed in 1.0 ml

of 100% ethanol for 5 min, air dried, and immersed in 1.0
ml of Giemsa staining solution (2.5 ml of KaryoMAX
Giemsa staining solution [Invitrogen Corp., Carlsbad,
Calif.] and 48.5 ml of 10 mM potassium phosphate buffer
[20 mM KH2PO4, 20 mM K2HPO4; pH 6.8]), washed
twice with distilled water, air dried again, and examined
under a Leica DAS Mikroskop at a magnification of
×1,000. Counts of bacterial adhesion were taken at four to
five random locations for a total of at least 150 Caco-2
cells, averaged, and statistically analyzed by the Duncan
test by using SAS software (SAS Institute, Cary, N.C.). The
inhibition of adhesion was calculated by taking the adhe-
sion of CD-9689 without any treatment as 100 percent by
the formula described.

Growth inhibition assay
Co-cultures of C. difficile (CD-9689) and Lactobacillus
(LDB B-30892) on solid medium as well as in broth were
done. In one such study, CD-9689 was streaked on RCM
agar and cross-streaked with LDB B-30892. In some other
experiments, CD-9689 and LDB B-30892 were co-cul-
tured in RCM broth followed by selective plating on RCM
and MRS agar plates, respectively. To study if the LDB-CFS
caused any growth inhibition on CD-9689 cells, different
ratios of LDB-CFS were added to RCM containing CD-
9689 cells. All plates and tubes were incubated anaerobi-
cally at 37°C.

Statistical Analysis
Data are expressed as mean ± Standard Error of Mean
(SEM). Statistical analyses of data were performed using
GraphPad Prism (version 3.02, GraphPad Software, San
Diego, CA). Comparisons of cytotoxicity values between
single control and CFS or CFT exposed sample means
were made using two-tailed Student's t test or Tukey's pair-
wise comparison test. The limit for statistical significance
was set at P < 0.05. Results of inhibition of adhesion assay
were statistically analyzed by the Duncan test by using SAS
software (SAS Institute, Cary, N.C.).

Results and discussion
Diminished cytotoxic effect of Clostridium difficile (CD-
9689) in presence of Lactobacillus delbruckeii ssp. 
bulgaricus B-30892 on Caco-2 cells
C. difficile-CFT causes a significant cytopathic effect on
Caco-2 cells, presumably because of the production of
extracellular cytotoxin(s) by this strain. Figure 1A shows
the normal appearance of Caco-2 cells (untreated con-
trol). Caco-2 cells remain healthy following treatment
with RCM (Figure 1B) and anti-toxin preparation from
LDB B-30892 (LDB-CFS) (Figure 1C). While C. difficile
cytotoxin after incubation with CFT from CD-9689-condi-
tioned RCM for 24 h caused cytopathic effect (rounding
and cell detachment) on Caco-2 cells (Figure 1D). The
lack of a cytopathic effect of CFT from CD-9689-condi-
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Role of LDB B-30892 on CD-9689 mediatedcytotoxicityFigure 1
Role of LDB B-30892 on CD-9689 mediatedcytotoxicity. Confluent Caco-2 cultures were incubated 24 h in DMEM 
containing 20% FBS. Cell free supernatants (CFS or CFT) from different treatments were added to the cell monolayer. (A) 
Caco-2 control cells (200× original magnification); (B) Normal-appearance after 24 h of incubation with fresh RCM diluted 1:4 
into DMEM containing 20% FBS; (C) Appearance of Caco-2 in LDB B-30892 CFS, diluted 1:4 into DMEM, 20% FBS. (D) Caco-
2 cultures incubated 24 h in cell-free RCM after growing CD-9689 24 h in it. Note the cytopathic effect of the CD-9689 cyto-
toxin. (E) Caco-2 cultures incubated 24 h in cell-free RCM after growing CD-9689 and LDB B-30892 24 hours together in it. 
(F) Caco-2 cultures incubated 24 h in cell-free RCM after growing CD-9689 for 24 h.
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tioned RCM after co-culturing CD-9689 and LDB B-30892
together for 24 h on Caco-2 cells was observed (Figure
1E). In contrast, Figure 1F shows the cytopathic effect
when no LDB B-30892 were co-cultured with CD-9689
(same as depicted in Figure 1D). We observed the similar
cytotopathic effects (as in Figures 1D and 1F) when heat
killed LDB B- 30892 were incubated with CD-9689 (data
not shown).

The lack of a cytotoxic effect shown in Figure 1E provided
clues that CFT from CD-9689-conditioned RCM was no
longer cytotoxic after co-culturing with LDB B-30892,
possibly due to detoxification of the C. difficile cyto-
toxin(s) by LDB B-30892 or factor(s) produced by this
organism. To verify this effect, we preformed a semi-quan-
titative assessment of C. difficile cytotoxin activity and its
detoxification by LDB B-30892.

Table 2 shows representative results of the semi-quantita-
tive assessment of C. difficile cytotoxin activity and its
detoxification by LDB B-30892. The C. difficile-condi-
tioned medium was cytotoxic up to a dilution of 1:8,
while the highest concentrations of RCM, MRS, or LDB B-
30892-conditioned medium (1:2) was non-cytotoxic and
maintained normal Caco-2 cellular morphologies. Impor-
tantly, the LDB B-30892/C. difficile co-culture supernatant
was also non-cytotoxic at its highest concentration (1:2).
This detoxification by LDB B-30892 required living cells
(which are metabolically active during the co-culturing
with CD-9689 for 24 h) since adding heat-killed LDB B-
30892 cells with C. difficile resulted in cytotoxicity equiv-
alent to that of the C. difficile-conditioned medium alone.

Based on these initial in-vitro observations, we further
investigated the following two issues: (i) Does LDB B-
30892 release a bioactive component in the CFS, which
results in the detoxification of C. difficile-mediated cyto-
toxicity; and (ii) Is the detoxification of C. difficile-medi-
ated cytotoxicity unique to LDB B-30892?

To test the first question, LDB B-30892 and CD-9689 were
grown separately in MRS and RCM broth, respectively,

under the conditions mentioned earlier. CFS from the
LDB B-30892 culture was added in different ratios to CFT
from the CD-9689 culture (in a similar manner as in the
semi-quantitative assay described above). We found that
CFS from LDB B-30892 culture inhibited the cytotoxic
effects of CFT from CD-9689 culture when added at a ratio
of 1:1 through 1:8, and this inhibitory effect diminished
in ratios lower than 1:16. These results indicate that LDB
B-30892-conditioned CFS contains a bioactive compo-
nent(s) or in other words, LDB B-30892 releases one or
more extracellular components in the growth medium,
which were responsible for inhibiting or deactivating the
exotoxins released by C. difficile (in growth medium), thus
protecting Caco-2 cells from C. difficile-mediated cytotox-
icity.

So far, we observed that cell-free supernatant from co-cul-
tured LDB/CD lacks cytotoxic property, also, when super-
natants from individually grown culture of LDB B-30892
and CD-9689 were mixed together, the CFS and CFT mix-
ture showed no cytotoxic effect. This observation indicates
that CFS from LDB B-30892 resulted in the inhibition of
cytotoxicity of CFT from CD-9689. To test whether the
inhibitory property of the above-mentioned cytotoxicity
of C. difficile is unique to LDB B-30892 or if it is typical to
any lactobacillus, we tested six other commercially availa-
ble probiotic or conventional lactobacillus strains (LB-1,
LB-2, LB-3, LB-4, LB-5, LB-6; Table 1). CFS samples from
the lactobacilli cultures (LB-1 through LB-6), either co-
cultured with CD-9689 (LB/CD co-culture supernatant)
or separately grown and then mixed together (LB/CD
mixed CFS/CFT) were tested for cytotoxicity and com-
pared with the results from LDB B-30892. We found no
other lactobacillus tested was able to inhibit the cyto-
pathic effect of CD-9689-conditioned CFT, in either co-
culture or in CFS/CFT mixtures of LB/CD. We deduced the
efficacy of LDB B-30892 to protect Caco-2 cells from the
cytotoxic effect of CD-9689-conditioned CFT and com-
pared that with other lactobacilli by a live-dead assay
using fluorescence dyes propidium iodide (PI, red, dead
cell indicator) and acridine orange (AO, green, live cell
indicator) [31] (Figure 2 and Figure 3).

Table 2: Effect of sterile media and CFS/CFT from CD-9689 and LDB B-30892 co-culture on Caco-2 cells.

Media only or CFS Appearance of Caco-2 cells

Dilution 1:2 1:4 1:8 1:16
RCM N1 N N N
CD-9689 CFS (CFT) C2 C C N
MRS N N N N
LDB B-30892 CFS (LDB-CFS) N N N N
LDB B-30892 – CD-9689 co-culture CFS N N N N
Heat-killed LDB B-30892 – CD-9689 co-culture CFS C C C N

1 N, normal cellular morphology
2 C, signs of cytotoxicity (e.g. cell rounding and detachment from the substrate)
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Figure 2A depicts control Caco-2 cells without any treat-
ment; most cells are viable as they incorporated AO but
not PI. Caco-2 cells treated with CFT from CD-9689 are
shown in Figure 2B, where most of the cells were dead as
indicated by the incorporation of PI by the vast majority
of the cells. Figures 2C and 2D represent the protective
effect of LDB B-30892-conditioned CFS on Caco-2 cells
when co-cultured (Fig 2C) with CD-9689 or when sepa-
rately cultured LDB-CFS was added to CFT from CD-9689
(Fig 2D). In both Figures 2C and 2D, the vast majority of
the cells excluded PI (red fluorescence) indicating a higher
live cell population. However, no other lactobacilli tested
in the present study were able to detoxify CD-9689-condi-
tioned CFT as similarly demonstrated by LDB B-30892
CFS. Figures 2E and 2F show the inability of LB-4, a L.
casei isolated from a commercial probiotic yogurt and LB-
1, a L. delbrueckii ssp. bulgaricus isolated from a probiotic
supplement, to inhibit the cytotoxicity induced by CFT
from CD-9689, as depicted by higher PI counts indicating
that the majority of cells are dead.

Figure 3 shows the counts of live and dead Caco-2 cells
after exposure to CFT from CD-9689, with or without
treatments with different lactobacilli CFS. A mixture of
cell-free extracts from CD-9689/LDB B-30892 at a ratio of
1:1 resulted in less than 4% cell death, while the mixture
at a ratio of 4:1 caused only 12% cell death. No other pro-
biotic organisms tested could result in such protection of
Caco-2 cell death when the probiotic CFS aliquots were
mixed to CD-9689-CFT.

The lack of a cytotoxic effect of CD-9689 in the presence
of LDB B-30892-conditioned CFS on Caco-2 cells is
thought to be due to a possible proteolytic activity of the
antitoxic component released by LDB B-30892. Indeed, a
similar detoxification of the C. difficile toxin A and B by a
protease produced by Saccharomyces boulardii has been
reported [35,36].

Lactobacillus delbruckeii ssp. bulgaricus B-30892 can 
inhibit the adhesion of Clostridium difficile to human 
colonic cells
The ability of different lactobacilli strains to inhibit the
adhesion of enteropathogens varies significantly. For
example, Ingrassia et al. [37] reported the ability of L. casei
DN-114 001 to inhibit the adhesion of adherent-invasive
Escherichia coli isolated from Crohn's disease patients. On
the contrary, Gueimonde et al. (2006) reported that L.
casei TMC 0409 actually increased the adhesion of C. dif-
fcile ATCC 9689 (CD-9689) in a Caco-2 model. These
apparent contradictory results can be found regularly in
probiotic or gut microbiology literature. It is widely
accepted that commensal or probiotic organisms prevent
colonization of enteropathogens on the gut epithelial sur-
face by competitive exclusion. Sharing of common carbo-

hydrate-binding sites in probiotic organisms allows the
blocking of adhesin receptors, thus promoting the inhibi-
tion of pathogen adhesion by steric hindrance [32,38].
Apart from whole cell bindings, another prominent
mechanism which is believed to play a crucial role are the
soluble factors (such as loosely adhered surface proteins
of certain lactobacilli) released in the gut lumen which
may cause the inhibition of adhesion or colonization of
enteropathogens [38,39]. We were interested to investi-
gate whether CFSs from different lactobacilli including
LDB B-30892 contain such soluble factor(s) that may
reduce the adhesion of CD-9689. It is evident from Figure
4, that culturing C. difficile (CD-9689) with CFS from Lac-
Pro's probiotic L. delbrueckii spp.bulgaricus (LDB B-30892)
significantly reduced the adhesion of this pathogen to the
Caco-2 cell monolayer. No other lactobacilli CFS tested
showed an inhibition of adhesion of CD-9689 as efficient
as LDB B-30892.

Lactobacillus delbruckeii ssp. bulgaricus B-30892 did not 
inhibit the growth of Clostridium difficile
To investigate if the whole cell or CFS from LacPro's pro-
biotic L. bulgaricus (LDB B-30892) were able to inhibit the
growth of pathogenic C. difficile (CD-9689), we did a co-
culture experiment on solid medium (trypticase soy agar,
TSA) as well as in broth (RCM). Our result of growth inhi-
bition study reveals that neither LDB B-30892 nor CFS
from LDB B-30892 inhibited the growth or viability of
CD-9689 (Figure 5). Since the CD-9689 tested grew well
in presence of LDB B-30892, it appeared that no soluble
and diffusible growth-inhibiting substances were released
from this bacterium, as has been reported for another pro-
biotic Lactobacillus [40]. Although, recent reports have
shown that L. casei inhibits the infection of Caco-2 cells by
S. Typhimurium [41] and L. rhamnosus blocks epithelial
barrier disruption by E. coli O157:H7 [42] without pro-
ducing any growth-inhibiting substances.

Conclusion
In the present study, we have gathered initial evidences
which indicated that cell-free supernatant (alternatively,
the conditioned medium) from probiotic L. bulgaricus
LDB B-30892 reduced the cytotoxicity produced by path-
ogenic C. difficile ATCC 9689. At the same time, the adhe-
sion of C. difficile was reduced significantly (P < 0.01) by
LDB B-30892. We hypothesize that one or more bioactive
component(s) is released by LDB B-30892 in its growth
medium (CFS), which is (or are) the probable causative
agent(s) of inhibition of cytotoxins, i.e., detoxification
and inhibition of adhesion which may occur via several
possible mechanisms, such as, proteolytic cleavage of
toxin or toxin receptors, blockage of toxin receptors or C.
difficile adhesion molecules on host cells by competitive
binding by the bioactive agent(s). However, the specific
mechanism of the detoxification and diminished adhe-
Page 7 of 11
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Live and dead status of Caco-2 cells after exposures to CFT from CD-9689 with or without treatments with different lactoba-cillus CFSFigure 2
Live and dead status of Caco-2 cells after exposures to CFT from CD-9689 with or without treatments with 
different lactobacillus CFS. After the treatments with CFS or CFTs, Caco-2 cells were trypsinized and then florescence 
dye, PI and AO were added. A green fluorescence (AO) indicates live cell, while a red fluorescence (PI) indicates dead cell.
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Quantitative assessment of live and dead status of Caco-2 cells after exposures to CFT from CD-9689 with or without treat-ments with different lactobacilli CFSFigure 3
Quantitative assessment of live and dead status of Caco-2 cells after exposures to CFT from CD-9689 with or 
without treatments with different lactobacilli CFS. Cont, control without any treatment, CFS from LDB B-30892 was 
added to CD-9689 CFT so that the resulting ratio of CFT from CD and CFS from LDB are 1:1, 4:1 and 8:1. The ratio of CFS 
from other lactobacilli (LB-1 through LB-6) to CFT from CD-9689 were 1:1. Values are presented as Mean ± Standard error of 
mean (SEM) of three experiments done in duplicate.
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Inhibition of CD-9689 to Caco-2 monolayer by cell free supernatants from different lactobacilliFigure 4
Inhibition of CD-9689 to Caco-2 monolayer by cell free supernatants from different lactobacilli. CD-9689 cells 
were suspended in 1:1 volume/volume RCM- lactobacillus conditioning MRS at a MOI of 100: 1 and incubated at 37°C in 7% 
CO2 for 2 h. After incubation, Caco-2 cells were washed, stained with Giemsa and counted. The above formula was used to 
calculate the percent inhibition of adhesion CD-9689 to Caco-2 monolayer. Values are presented as Mean ± Standard error of 
mean (SEM) of three experiments done in duplicate. ** P < 0.01.
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sion of C. difficile in presence of CFS from LDB B-30892
remains to be elucidated. In future, we plan to purify the
bioactive component(s) from LDB B-30892-CFS, further
characterize and investigate the underlying mechanism of
reduced cytotoxicity and adherence of C. difficile on Caco-
2 cells.
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Failure of LDB B-30892 (Lactobacillus) to inhibit the growth of CD-9689 (C. diff)Figure 5
Failure of LDB B-30892 (Lactobacillus) to inhibit the 
growth of CD-9689 (C. diff). LDB B-30892 and CD-9689 
were co-cultured on RCM agar anaerobically at 37°C for 48 
h. LDB B-30892 and CD-9689 were co-cultured on TSA 
anaerobically at 37°C for 48 h.
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