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Abstract 

Background: Factors like ethnicity, diet and age of an individual have been hypothesized to play a role in determin-
ing the makeup of gut microbiome. In order to investigate the gut microbiome structure as well as the inter-microbial 
associations present therein, we have performed a comprehensive global comparative profiling of the structure 
(composition, relative heterogeneity and diversity) and the inter-microbial networks in the gut microbiomes of 399 
individuals of eight different nationalities.

Results: The study identified certain geography-specific trends with respect to composition, intra-group hetero-
geneity and diversity of the gut microbiomes. Interestingly, the gut microbial association/mutual-exlusion networks 
were observed to exhibit several cross-geography trends. It was seen that though the composition of gut microbi-
omes of the American and European individuals were similar, there were distinct patterns in their microbial interac-
tion networks. Amongst European gut-microbiomes, the co-occurrence network obtained for the Danish population 
was observed to be most dense. Distinct patterns were also observed within Chinese, Japanese and Indian datasets. 
While performing an age-wise comparison, it was observed that the microbial interactions increased with the age of 
individuals. Furthermore, certain bacterial groups were identified to be present only in the older age groups.

Conclusions: The trends observed in gut microbial networks could be due to the inherent differences in the diet of 
individuals belonging to different nationalities. For example, the higher number of microbial associations in the Dan-
ish population as compared to the Spanish population, may be attributed to the evenly distributed diet of the later. 
This is in line with previously reported findings which indicate an increase in functional interdependency of microbes 
in individuals with higher nutritional status. To summarise, the present study identifies geography and age specific 
patterns in the composition as well as microbial interactions in gut microbiomes.
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Background
Microbial communities residing in different ecologi-
cal niches are known to play several key functions and 
often define the phenotypic characteristics of their envi-
ronments. A typical microbial community consists of 
numerous bacterial/archaeal species belonging to diverse 

taxonomic lineages. Several recent studies have indicated 
that the functional behaviour of a bacterial species is not 
only dictated by its own genomic content, but is also 
influenced by the presence of other microbes that co-
habit in that given environment [1, 2]. In other words, the 
function of a given microbe in an environment is depend-
ent on its interactions with other resident microbes pre-
sent in that environment. Therefore, in order to obtain a 
holistic insight into the role of the microbial community 
in determining the phenotypic traits of an environment, 
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it is necessary to understand the inter-microbial inter-
action patterns present within the environment under 
study.

A key focus of several concerted efforts by independ-
ent research groups as well as consortia like the human 
microbiome and the meta-HIT projects has been to pro-
file as well as characterize the microbial communities 
residing in various body sites [3–5]. Various studies have 
also attempted to identify differences in microbial com-
munities inhabiting different body sites of individuals 
from certain geographies and age-groups [6–14]. How-
ever, a comprehensive analysis across geographies as well 
as different age groups is still non-existent.

Cohabiting microbes in an environment can inter-
act with each other in various ways. For example, they 
may have positive interactions like mutualism and com-
mensalism, or negative interactions like parasitism, 
amensalism and competition. A few recent studies have 
attempted to infer such inter-microbial co-occurrence/
exclusion networks across different environments 
[15–17]. For example, a study on metagenomic datasets 
from 18 different human body sites, obtained from 239 
individuals, has identified a global network of 3005 sig-
nificant (positive and negative) interactions across 197 
bacterial groups [1].

Most of the reported studies have inferred the inter-
microbial interactions based on the co-occurrence pat-
terns of various microbes across samples [1, 15–17]. In 
other words, a pair of bacterial/archaeal species was 
considered to ‘interact’ if their abundance profiles exhib-
ited co-occurrence or mutual exclusion across multi-
ple samples. Since the relationships between different 
microorganisms are predicted based on the similar-
ity/dissimilarity in their abundance patterns in various 
samples, a correlation-based analysis is a key step in 
inferring the microbial association networks (in a given 
environment). While the edges in the co-occurrence net-
work indicate positively correlated species, they depict 
negatively correlated species in the mutually exclusive 
network.

The co-occurrence as well as mutual exclusion net-
works can be utilized to investigate whether changes (or 
aberrations) in these networks can be associated with 
any disease or physiological disorder. The gut harbours 
one of the largest microbial communities in the human 
body. This microbial community is sensitive to environ-
mental factors like diet, antibiotics as well as exposure to 
pathogens [18–21]. A recent study indicated variations in 
the gut microbial co-occurrence networks of individuals 
with varying nutritional status [22]. However, a compre-
hensive comparison of the gut microbial interaction net-
works from individuals belonging to diverse geographical 
locations is unavailable till date.

The motivation of obtaining and investigating a global 
(cross-geographic and cross-age-group) picture of the 
gut microbial communities, both in terms of their taxo-
nomic composition as well as the inherent inter-micro-
bial interaction networks therein, forms the basis of the 
current study. In this study, we have performed a com-
parative investigation of the gut microbial communi-
ties based on the available gut microbiomes from 399 
individuals of various age groups and belonging to eight 
different nationalities. We have also performed an asso-
ciation analysis of the dietary consumption profiles of 
these nationalities with the composition of the gut micro-
biomes of the studied subjects, as well as the architecture 
of the inherent interaction networks.

Results
Core group of genera across gut microbiomes
The pattern of occurrence of each genus across gut 
microbiomes of 399 individuals from eight nationalities 
and various age-groups (Table  1) was profiled and rela-
tive homogeneity of the gut microbiomes was computed 
(described in the “Methods” section). While a total of 342 
genera were observed to be present in at least one of the 
399 gut microbiomes, 75 (17.1  %) and 267 (68  %) were 
observed to be detected in at least 90 and 50 % of the gut 
microbiomes, respectively. In other words, although the 
studied gut microbiomes were obtained from individuals 
from eight different nationalities and ranged in age from 
infancy till late 70s, a core group of 267 genera was found 
to occur across more than 50 % of the gut microbiomes. 
This indicates that there exists an inherent signature of 
taxonomic composition in the gut microbiome that is 
conserved across age and nationality of the individual.

Microbial community composition and their interaction 
patterns in gut microbiomes of individuals from different 
nationalities
Geography‑specific trends in the gut microbial community 
structure of individuals from various geographies
In spite of the presence of a conserved group of genera 
across guts of individuals, a clear geography-specific 

Table 1 Distribution of number of individuals in each age 
group, considering all across nationalities (except America 
for which metadata was not available)

Group Age group (years) Number of individuals

G1 0–10 26

G2 10–30 39

G3 30–40 47

G4 40–50 69

G5 50–60 61

G6 60 and above 64
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signature of microbial composition was observed in 
the detected pattern of various genera (Fig.  1). The gut 
microbiomes from eight nationalities were found to form 
two distinct clusters. While the first group consisted of 
individuals belonging to the European and American 
nationalities, the second group consisted of the Asian 
populations. As compared to the Asian gut microbiomes 
(cluster 2), a higher number of genera were found to be 
associated with the European/American gut microbi-
omes (cluster 1). These results suggest that there exist 
geography-specific signatures in the gut microbiomes of 
the individuals.

One of the distinguishing factors observed in the gut 
microbiomes belonging to these clusters was the notice-
ably higher Jaccard distances (intra-nation) within the 
gut microbiomes of the Asian nationalities, as compared 
to those from America/Europe (Additional file  1). In 
other words, Asian populations were found to have much 
higher inter-individual heterogeneity in the composition 
of gut microbial community, as compared to the Ameri-
can/European individuals.

Overall properties of gut microbial interaction networks 
across different geographies
The microbial composition and structural properties of 
the inter-microbial interaction networks (both co-occur-
rence and mutual exclusion) were investigated in order 
to probe whether the observed trends in the overall com-
position of the gut microbiomes was also reflected at the 
level of microbial interactions. A key objective was also 
to investigate whether microbial genera dominant in a 
given microbiome had any influence on the interaction 
patterns present therein. The network properties of the 
gut bacterial communities across geographies are pro-
vided in Table 2.

Interestingly, although the gut microbiomes of Ameri-
can and European individuals were observed to be simi-
lar in terms of the structure, composition and variability 
of the microbial communities (Fig.  1; Additional file  1), 
distinct features could be identified in the gut micro-
bial interaction patterns within these nationalities. For 
example, gut microbiomes of the American individuals 
had a noticeably higher node degree (23.09) and network 
density (0.32) in their co-occurrence networks as com-
pared to the European populations. This indicates that 
the degree of positive inter-dependence between the gut 
microbiota in the American population is probably much 
higher than in the European populations.

An inspection of the gut microbiome mutual exclusion 
network for the American individuals indicated Bacte-
roides (with degree =  46) to have the highest exclusion 
tendencies amongst several other genera (Fig.  2a). This 
was followed by the genus Blautia which was observed 

Fig. 1 Heatmap showing the detection pattern of various genera in 
the gut microbiomes of individuals belonging to various nationalities. 
Two distinct clusters have been identified. The first group contains 
all the European nationalities along with the American samples. The 
second group contains the gut microbiomes of the Asian populations 
(Chinese, Japanese and Indians). Red color signifies that the genus is 
either absent or present in low abundance, whereas the green color 
signifies that it is highly abundant
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to participate in nine exclusion interactions. Thus, there 
exist a few hub genera like Bacteroides which negatively 
modulate the occurrence of several other genera in the 
gut microbiomes of the American individuals. However, 
neither Bacteroides nor Blautia were observed to be sig-
nificantly abundant in the American gut microbiomes 
as compared to other genera (Additional files 2 and 3). 
In contrast, significantly abundant genera (Allistipes, 
Sutterella  and  Akkermansia) in the American popula-
tions were not observed to play central role in the inter-
microbial interaction networks (Additional file  4). The 
above result indicates that the key genera modulating 
the inter-microbial interaction networks may be differ-
ent from the ones that are the most dominant in terms of 
composition/abundance.

In spite of having a greater degree of homogeneity, with 
respect to gut microbial community structure and com-
position, distinct properties were observed amongst the 
gut microbiome interaction networks obtained for vari-
ous nationalities within the European continent. Among 
the Europeans, the co-occurrence network obtained 
for the Danish population was observed to be the most 
dense, with an average degree of 12.56 (among the 
various genera). Although the co-occurrence network 
observed for the Spanish population was similar to that 
of the Danish individuals in terms of the number of nodes 
(70 for Danish and 68 for Spanish) (Table 2), the average 
degree of the nodes was observed to be noticeably lower 

(4.64). This probably indicates that in spite of the over-
all similarity in community composition and structure 
(characterized by dominance of Allistipes, Phascolorac-
tobacterium, Roseburia, Akkermansia and Faecalibacte-
rium) (Fig. 1; Additional files 1, 5, 6), there is an increased 
level of functional interdependence among the bacterial 
groups residing in the guts of the Danish individuals. 
For mutual exclusion networks, besides Bacteroides, the 
gut microbiota of the Danish individuals was observed 
to have genera Roseburia and Faecalibacterium show-
ing multiple relationships (Fig.  3a). In Spanish popula-
tion, Bacteroides and Blautia were observed to form hubs 
with Selemonas acting as a linker between these hubs 
(Fig. 3b). In contrast to the Danish and Spanish individu-
als, properties of the co-occurrence and mutual exclusion 
networks obtained for the Italian and French individuals 
were observed to be similar (Table  2). The similarity of 
the network properties in these two European countries 
could be a consequence of the fact that the average age of 
the individuals in these groups was high. However, this 
may be an artefact due to the lower number of samples 
constituting these cohorts (eight French; six Italian). The 
absence of larger number of publicly available metagen-
omes from these populations impeded us from further 
examining this aspect.

In spite of having an overall similarity in the intra-
individual variability (intra-nationality Jaccardian dis-
tances), complexity (Shannon diversity) and genera-based 

Table 2 Overall properties of (A) co-occurrence network and (B) mutual exclusion network of gut microbiomes across all 
geographies

Regions Number of  
vertices

Number 
of edges

Average degree Diameter Avg shortest 
path length

Network density Clustering 
coefficient

Network  
centralization

A

America 74 866 23.09 7 2.14 0.32 0.69 0.29

China 54 343 12.47 6 2.26 0.24 0.59 0.32

Denmark 70 446 12.56 10 2.71 0.18 0.66 0.29

France 76 99 2.57 9 3.52 0.03 0.51 0.10

India 64 216 6.65 10 3.64 0.11 0.58 0.18

Italy 55 81 2.89 1 1.00 0.05 1.00 0.08

Japan 84 455 10.71 8 2.72 0.13 0.54 0.22

Spain 68 160 4.64 8 3.52 0.07 0.51 0.13

B

America 65 86 2.61 7 2.52 0.04 0 0.70

China 45 70 3.04 6 2.84 0.07 0 0.47

Denmark 49 57 2.28 8 3.17 0.05 0 0.34

France 57 48 1.66 7 3.10 0.03 0 0.14

India 6 4 1.14 2 1.43 0.22 0 0.50

Italy 24 14 1.12 2 1.33 0.05 0 0.13

Japan 26 24 1.78 6 3.26 0.07 0 0.27

Spain 31 28 1.75 6 2.78 0.06 0 0.26
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membership (presence/absence of different genera) of the 
microbial communities (Fig. 1; Additional file 1), the differ-
ent nationalities within the Asian continent were observed 
to have clearly distinct features, not only with respect to 
the overall properties of the gut microbial interaction net-
works, but also with respect to the abundances of various 
microbial genera (Table 2; Additional files 7, 8, 9, 10). For 
example, while the overall properties of the interaction 

networks for the gut microbiota in Chinese and Japanese 
populations were observed to be similar, the co-occurrence 
network of the Japanese was observed to be larger in terms 
of the number of genera (84 in Japan compared to 54 in 
China). On the other hand, the density of the co-occur-
rence patterns (average degree of the nodes) was observed 
to be marginally higher in Chinese population (12.47 for 
China and 10.71 for Japan). However, as compared to the 

Fig. 2 Gut microbial a mutual exclusion and b co-occurrence network observed in the gut microbiome of American individuals. The high network 
centralization property in the American individuals indicates a few central hub genera (Bacteroides) exhibiting mutual exclusion with other genera



Page 6 of 21Yadav et al. Gut Pathog  (2016) 8:17 

Japanese, the gut microbiota in Chinese were observed to 
have much stronger mutual exclusion patterns, not only 
with respect to the number of genera constituting the net-
work (45 genera in China as compared to 26 in Japan), but 
also with respect to the average degree of the nodes (China 
3.04, Japan 1.78). Similarly, while the genus Bacteroides was 
observed to have the maximum number of exclusion rela-
tionships in the Chinese population (as also observed for 
the American population), the gut microbial mutual exclu-
sion network in the Japanese individuals was observed to 
have Enterococcus, Mobiluncus and Strentophomonas as 
the key hubs of negative associations (Fig. 4). Interestingly, 
with the exception of Bacteroides and Ruminococcus, none 
of the genera that were observed to be significantly over-
abundant in the Chinese and Japanese populations acted 
as hubs in the inter-microbial networks. While the guts of 
the Chinese individuals were found to be characterized by a 
significant increase in the abundances of genera like Faecal-
ibacterium, Bacteroides, Roseburia, Ruminococcus, and a 
significant lower abundances of Bifidobacterium, Sutterella, 
Akkermansia, Prevotella, Dialister, Collinsella, etc. (Addi-
tional files 7, 8), Bilophila was observed to be a signature 
genus in the gut microbiomes of the Japanese population 
(Additional files 9, 10).

In contrast to the Chinese and the Japanese popu-
lations, the gut microbiota of the Indian individuals 
were observed to be characterized by not only a dis-
tinct decrease in the average degree (6.65) of the genera 
comprising the co-occurrence network, but also lower 
Freeman network centralization (0.18) (Table  2). This 
probably indicates lesser functional interdependence as 
well as competition between the bacterial groups residing 
the guts of the Indian population. The mutual exclusion 
network for the Indian population was on the other hand, 
observed to be sparse with only six genera having four 
interactions between them.

The above results indicate that the groups of genera 
that tend to occur in majority in a given gut microbiome 
are distinct from the genera that play key role in modu-
lating the inter-microbial interactions in a gut microbi-
ome. In other words, specific group of genera act as hubs 
in the gut microbial networks.

Comparison of the compositions of bacterial interaction 
networks across nationalities
The co-occurrence networks were observed to have simi-
lar architecture in the American, Danish, Chinese and 
Japanese guts. Each of these networks was characterized 

Fig. 3 Gut microbial mutual exclusion network observed in individuals from a Denmark b Spain c France d Italy. Subtle differences in mutual exclu-
sion patterns exist amongst different European populations
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by a single major hub of genera, with auxiliary smaller 
hubs connected to it through one (or a few) connect-
ing genera (Figs.  2b, 5, 6). On the other hand, Spanish, 
French and Indian populations were found to be similar, 
with multiple hubs of genera having several intercon-
nections (Figs. 5b, c, 6c). This result suggests lesser func-
tional interdependency among gut microbiota in these 
nationalities. Interestingly, the co-occurrence network 
of the Italian individuals was found to be distinct, with 
occurrence of multiple hubs having no interconnections 
between each other (Fig. 5d). The Indian individuals were 
found to have only one hub containing likely pathogenic 

genera (Escherichia, Shigella, Klebsiella, Streptococcus 
and Enterobacter). This group of genera were reported 
earlier to specifically co-occur with each other in the guts 
of the severely malnourished children [22]. The above 
results further confirm the presence of core group of 
pathogens that tend to co-occur in the guts of these chil-
dren and probably have a key role for deciding nutritional 
status, as suggested by the original study [22]. 

The common interacting microbial pairs (i.e. edges) in 
the interaction networks were identified. Given the lower 
sample size, the French and Italian populations were 
removed from this study. Only three interactions were 

Fig. 4 Mutual exclusion network in gut microbiomes of individuals belonging to a Chinese b Japanese and c Indian nationalities. Very few mutual 
exclusion interactions are observed for Indian, compared to other nationalities
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found to be common in all 6 geographic regions. In order 
to get a better overview of common interacting pairs 
(edges), the study was narrowed down to pair-wise com-
parison across specific regions (summarized in Table 3). 
Interestingly, the largest number (259) of common inter-
acting pairs of taxa was observed between the gut micro-
biomes of American and Danish populations, followed by 
223 between American and Chinese populations. How-
ever, only 92 interacting microbial pairs in the Chinese 
gut was found to be similar to those in the Danish gut. 
Similarly, gut microbiome networks of Chinese and Japa-
nese individuals had fewer common interacting pairs (83) 
as compared to those between Chinese and American 
individuals (223), indicating a cross-continental trend. 
On the other hand, within the European nationalities, 
the microbiome interaction networks of Denmark and 
Spain were found to have 95 common edges. The above 
results are interesting as they indicate that, in spite of the 
geography-specific trends in the overall composition and 
structure of the gut microbial communities, cross-geo-
graphic trends exist in the gut microbiome association/
exclusion networks.

A deeper investigation of the common networks 
revealed that a few genera had maximum involvement 
in the common edges (Additional file  11). As observed 
earlier, Bacteroides was found to have highest (20) 
interactions in the mutual exclusion network. While 

genera Pyramidobacter, Pseudoflavonifractor, Shuttle-
worthia, Alistipes and Anaerostipes were found in the 
co-occurrence network in the guts, Bifidobacterium and 
Escherichia were observed to play roles in mutual exclu-
sion network. In American and Chinese population, 
Pseudoramibacter was found to occur maximum times 
(degree = 20) in the common co-occurrence interactions, 
followed by Pyramidobacter and Collinsella (each hav-
ing degree = 17). In the common gut microbial interac-
tion networks of American and Danish individuals, while 
Selenomonas was observed to be an important hub with 
highest representation in the common edges in the co-
occurrence network (betweeness = 1; degree = 23), Bac-
teroides was seen to be dominant in the mutual exclusion 
network. Between the gut microbial interaction networks 
of Chinese and Japanese populations, while Heliobacte-
rium, Pyramidobacter, Anaerotruncus, Pseudoflavonifrac-
tor  and  Shuttleworthia were identified as nodes having 
high centrality values in the common co-occurrence net-
work, none of the genera were found to be common in the 
mutual exclusion networks. While Thermoanaerobacter, 
Pyramidobacter  and  Turicibacter were observed to be 
frequent in co-occurrence networks in Spanish and Dan-
ish guts, Bacteroides was identified to be the key bacteria 
(participating in 4 out of 7 common interactions) in the 
mutual exclusion networks of Spain and Denmark. Pyra-
midobacter was observed to be present with high degree 

Fig. 5 Gut microbial co-occurrence network observed for the a Danish b Spanish c French and d Italian nationalities. Distinct differences in the 
co-occurrence networks are seen in the gut microbiomes of individuals from various European nationalities
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Fig. 6 Gut microbial co-occurrence network observed for the a Chinese b Japanese and c Indian nationalities. Distinct differences exist in the co-
occurrence networks of the gut microbiomes (specifically Indian v/s Chinese and Japanese)
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in most of the common co-occurrence networks. These 
results suggest that while genera like Pyramidobacter, 
Pseudoflavonifractor and Shuttleworthia have a general 
tendency to occur in the co-occurrence networks across 
various geographies, genera like Bacteroides have a ten-
dency to negatively regulate the occurrence of many gut 
genera across individuals of different geographies. These 
results further indicate that gut microbial communities 
of individuals share specific common features (irrespec-
tive of their geographies). Similar analyses were also per-
formed using order level taxonomic assignments for the 
studied metagenomic datasets, which indicated equiva-
lent results (Additional file 12).

Microbial community composition and their interaction 
patterns in gut microbiomes of individuals belonging 
to different age‑groups
Age‑specific trends in the gut microbial community structure
Two distinct clusters of gut microbes were observed in 
all the individuals, irrespective of the geographies to 
which they belong (Fig.  7). While the first group con-
sisted of individuals belonging to younger age groups 
(less than 40 years), the second group consisted of older 
individuals (more than 40  years). Similar signature pat-
terns of the membership of the gut microbiomes were 
observed in individuals belonging to various age groups 
(G1: 0–10 years, G2: 10–30 years, G3: 30–40 years, G4: 
40–50 years, G5: 50–60 years, G6: more than 60 years of 
age). These results suggest that the gut microbiomes of 
individuals have distinct age specific trends.

The diversity (in terms of the number of genera 
detected) of the gut microbes in older individuals was 
observed to be higher as compared to those in younger 

people. Certain groups of genera were also detected 
only in the older age groups (G4, G5 and G6) (Addi-
tional file 13). Furthermore, the increasing trend of rela-
tive homogeneity (i.e. lower intra-age group Jaccardian 
distances) with age indicates that, the gut microbial 
population becomes much more homogeneous across 
the individuals with age, irrespective of the geographies 
where they live (Additional file 1). Similarly, the Shannon 
diversity indices also showed noticeable increase with age 
and was found to stabilize after a certain age-group (Addi-
tional file 1). This indicates that with increasing age, the 
gut microbial population not only becomes consistent 
across individuals from various geographies, but its diver-
sity increases till the age of 40 and stabilizes after that.

Overall properties of gut microbial interaction networks 
across different age‑groups
Investigating the co-occurrence networks across indi-
viduals belonging to different age groups revealed a dis-
tinct change in the average degree of the nodes (genera) 
across age groups (Table  4). The average node degree 
of the lower age groups (G1, G2, G3) (7.1–9.0) were 
observed to be noticeably lower as compared to that of 
the older age groups (G4, G5, G6) (16.4–19.3). This indi-
cates an increase in the functional inter-dependence 
among gut bacterial groups for individuals above the age 
of 40. Therefore, the gut microbial communities showed 
distinct age specific trends not only with respect to 
their composition (Fig.  7), but also with respect to cer-
tain properties of inter microbial association/exclusion 
networks.

In addition to the increase in average node degree in 
the co-occurrence networks, an increase in the network 

Table 3 Overall network properties of  common interacting microbes in  gut microbiomes of  individuals from  various 
nationalities

Regions Number  
of vertices

Number 
of edges

Average 
Degree

Diameter Avg shortest  
path length

Network 
density

Clustering  
coefficient

Network  
centralization

America
China

47 223 9.29 5 2.35 0.20 0.55 0.26

America
Denmark Spain

37 85 4.47 7 3.03 0.12 0.60 0.19

America
Denmark

53 259 9.59 5 2.13 0.18 0.68 0.28

China
Denmark

36 92 4.97 7 2.71 0.14 0.69 0.21

China
Japan
India

22 24 2.09 6 2.65 0.10 0.19 0.20

China
Japan

41 83 3.95 10 3.02 0.10 0.53 0.18

Denmark
Spain

40 95 4.63 8 3.24 0.12 0.60 0.20
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Fig. 7 Heatmap showing patterns of various genera present in gut microbiome of individuals belonging to different age groups. In spite of being 
cross-geographic, the gut microbiomes of individuals belonging to the six different age groups cluster into two distinct groups. While the first 
group consists of the younger age groups (G1: 0–10 years, G2: 10–30 years and G3: 30–40 years), the second group consists of the older age groups 
(G4: 40–50 years, G5: 50–60 years and G6: 60 years and above). Red color signifies that the genus is either absent or present in low abundance, 
whereas the green color signifies that it is highly abundant



Page 12 of 21Yadav et al. Gut Pathog  (2016) 8:17 

centralization properties were observed in the gut micro-
bial mutual exclusion networks for individuals in the age 
groups G3–G6. This indicates that in individuals above 
30 years of age, there exist certain key microbial groups 
that strongly inhibit several other genera. Overall causes 
of these trends and their implications on physiology and 
gut health requires deeper investigation on the life-style 
habits, environmental exposure and dietary changes that 
normally happen with age. It also requires investigation 
of the compositional changes happening within the inter-
action networks at different age-groups.

Comparison of the microbial interaction networks across age 
groups
Visual inspection of the co-occurrence networks (Fig. 8) 
revealed similar characteristics across age groups. The 
networks were characterized by the presence of a central 
dense hub of co-occurring genera, connected with aux-
iliary smaller hubs. However, the density of the central 
hub was observed to increase with age of the individuals. 
Network density was observed to increase from 0.13 in 
G1 to 0.24 in G6. This observation, in line with the earlier 
observation of an increase of average degree of nodes, 
further indicates an increase in inter-dependence among 
the bacterial genera (especially those constituting the 
central hub) with age of the individuals.

Analysis of the networks (Fig. 9) identified Bacteroides 
as a central genus having multiple mutual exclusion 
patterns with other genera in the gut microbiomes of 
individuals above 30 years. The number of exclusion rela-
tionships was found to be especially high in the 30–50 
(G3, G4) and above 60 (G6) age groups. However, for the 

age group G5, although the number of mutual exclusion 
relationships involving Bacteroides was observed to be 
relatively less, additional central genera like Ruminococ-
cus, Acidiminococcus and Escherichia were present in 
the network. In summary, the above observations indi-
cate that the gut microbial community probably adapts 
with age a strong bi-partite ‘compartmentalized’ struc-
ture, wherein groups of genera show strong co-occur-
rence relationships with each other, with certain key 
genera strongly inhibiting the presence of the members 
of these groups.

Specific microbial interactions in the gut microbiome 
of middle aged and elderly individuals
Analyses of the microbiome networks indicated several 
genera that specifically existed in the interaction net-
works of individuals above the age of 40 (groups G4–G6) 
(Table  5). The functional characteristics of these genera 
were subsequently probed from literature. Genera like, 
Acholeplasma, Aerococcus, Treponema, Desulfovibrio and 
Brachyspira are found to contain species that are oppor-
tunistic pathogens (referred to as ‘Pathobionts’) [23–27]. 
Furthermore, two genera, namely Gemmella and Paras-
cardovia, have been seen to be associated with opportun-
istic infections and dental caries, respectively [28–30]. It is 
known that there is a progressive decrease in the immunity 
of individuals with age. The decrease in immunity is likely 
to result in the entry of such opportunistic pathogens in 
the gut microbial community. Another interesting obser-
vation in the gut microbiome of elderly was the presence 
of thermophilic/alkaliphilic genera like Alkaliphilus, Cal-
dicellulosiruptor, Thermoanaerobacter  and Thiobacillus. 

Table 4 Overall properties of  (A) co-occurrence network and  (B) mutual exclusion network in  gut microbiomes of  indi-
viduals belonging to various age groups

Age groups Number  
of vertices

Number 
of edges

Average 
Degree

Diameter Avg shortest  
path length

Network  
density

Clustering  
coefficient

Network  
centralization

A

G1 (0–10) 64 279 8.585 8 2.810 0.136 0.536 0.218

G2 (10–30) 57 206 7.103 7 2.419 0.127 0.440 0.329

G3 (30–40) 56 257 9.018 8 2.856 0.164 0.578 0.355

G4 (40–50) 72 704 19.288 8 2.260 0.272 0.666 0.325

G5 (50–60) 69 574 16.400 6 2.098 0.241 0.597 0.339

G6 (>60) 74 663 17.680 6 2.177 0.242 0.632 0.339

B

G1 (0–10) 17 18 2.000 6 3.085 0.125 0 0.204

G2 (10–30) 26 26 1.926 6 3.487 0.077 0 0.217

G3 (30–40) 19 18 1.800 2 1.895 0.100 0 1.000

G4 (40–50) 52 55 2.075 6 2.302 0.041 0 0.875

G5 (50–60) 39 38 1.900 8 3.508 0.050 0 0.334

G6 (>60) 40 36 1.756 2 1.932 0.045 0 0.815



Page 13 of 21Yadav et al. Gut Pathog  (2016) 8:17 

Fig. 8 Gut microbial co-occurrence network in individuals belonging to the six age groups namely, a Group 1 (0–10 years) b Group 2 (10–30 years) 
c Group 3 (30–40 years) d Group 4 (40–50 years) e Group 5 (50–60 years) f Group 6 (above 60 years). The variations in the co-occurrence networks 
are depicted across the different age-groups

Fig. 9 Gut microbial mutual exclusion network in individuals belonging to the six age groups namely, a Group 1 (0–10 years) b Group 2 (10–
30 years) c Group 3 (30–40 years) d Group 4 (40–50 years) e Group 5 (50–60 years) f Group 6 (above 60 years). The variations in the mutual exclusion 
networks are depicted across the different age-groups
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Distinct physiological changes associated with age, disease 
and dietary habits may form the basis for the entry of such 
extremophiles. The functional implication of the presence 
of such genera in the guts of the elderly however needs 
further investigation.

Influence of diet on the composition and network 
properties of the gut microbiomes of the various 
nationalities
The probable relationships between the population level 
dietary statistics for different nationalities (obtained from 
http://faostat3.fao.org/download/FB/FBS/E) and the 
gut microbial composition profile of the corresponding 
microbiomes were investigated using partial least square 
(PLS) regression analysis. The analysis indicated varied 
degree of correlations between various genera and per-
capita dietary intakes of the different nationalities. For all 
the genera, the maximum correlation was observed for 
the first component of the partial least square regression 
(PC1). Further, the strength of the correlations (of the 
genera abundances with the component) ranged from as 
high as 0.91 (observed for Bulleidia) to 0.46 (observed for 
Peptostreptococcus) (Additional file  14). This suggests 
probable influence of diet on the abundances of various 
genera present in the gut.

Further, a core set of 28 genera, identified to be present 
in four (out of the eight) nationalities, was observed to have 

regression (R2) values greater than 0.64 (R > 0.8) with the 
PC1. Subsequently, specific relationships between the per-
capita intakes of the different dietary components with the 
abundances of these 28 gut microbial genera were inves-
tigated (Additional file 15). Based on the distinct patterns 
of association with the different dietary factors, the pre-
sent analysis identified three distinct groups of genera. The 
first group consisted of the genera Prevotella, Paraprevo-
tella, Succinatimonas, Porphyromonas and Mitsuokella. 
This group was observed to have a strong association 
with the dietary pulse content, followed by aquatic prod-
ucts, starchy roots, sugar crops and vegetables (specifically 
Prevotella and Paraprevotella). On the other hand, a nega-
tive association was observed for this group with food cat-
egories consisting of meat, animal fats and vegetable oils. 
Prima facie, this group of genera seems to have an associa-
tion with vegetarian diet. Interestingly, earlier studies have 
indicated presence of such genera in the gut of individu-
als having higher intake of vegetables and dietary fibre and 
lower intake of fats [18, 31]. The second group consisted 
of genera like, Roseburia, Butyrivibrio, Allistipes, Abio-
tropha, Bulleidia and Finegoldia, which were observed to 
have a positive association with a variety of food sources, 
with the exception of pulses, tree nuts and fruits. The third 
group consisted of commensal genera, including Bacte-
roides, Faecalibacterium, Clostridium, Ruminococcus, 
Blautia and   Phascoloractobacterium. Most of the genera 

Table 5 Bacterial species found exclusively in older age groups (G4–G6)

Genus Order G1 G2 G3 G4 G5 G6

Acholeplasma Acholeplasmatales 0 0 0 1 1 1

Gemella Bacillales 0 0 0 1 1 1

Parascardovia Bifidobacteriales 0 0 0 1 1 1

Alkaliphilus Clostridiales 0 0 0 1 1 1

Desulfitobacterium Clostridiales 0 0 0 1 1 1

Dehalococcoides Dehalococcoidales 0 0 0 1 1 1

Mesoplasma Entomoplasmatales 0 0 0 1 1 1

Aerococcus Lactobacillales 0 0 0 1 1 1

Jonquetella Synergistales 0 0 0 1 1 1

Thermanaerovibrio Synergistales 0 0 0 1 1 1

Granulicatella Lactobacillales 0 0 0 1 1 1

Mobiluncus Actinomycetaceae 0 0 0 1 0 1

Alicyclobacillus Bacillales 0 0 0 0 1 1

Desulfovibrio Desulfovibrionales 0 0 0 0 1 1

Brachyspira Spirochaetales 0 0 0 0 1 1

Caldicellulosiruptor Thermoanaerobacterales 0 0 0 1 1 0

Thermoanaerobacter Thermoanaerobacterales 0 0 0 1 1 0

Rhodospirillum Rhodospirillales 0 0 0 1 0 0

Erysipelothrix Erysipelotrichales 0 0 0 0 1 0

Thiobacillus Hydrogenophilales 0 0 0 0 0 1

Thauera Rhodocyclales 0 0 0 0 0 1

http://faostat3.fao.org/download/FB/FBS/E
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belonging to this group had a high positive association 
with Berry index (indicative of diversity of  a diet) as well as 
with healthy food diversity index [32]. These results are in 
line with earlier studies which have indicated the positive 
association of these genera (especially Faecalibacterium 
and Ruminococcus) with the health of the human host [22, 
33]. However, in terms of the association with the differ-
ent food categories, two sub-groups were observed among 
the members of this group. While the members of the 
first sub-group (Bacteroides, Clostridium, Phascolorac-
tobacterium, Blautia and Peptoniphilus) were observed 
to have a positive association with consumption of fish, 
aquatic products and eggs, those belonging to the second 
sub-group (Faecalibacterium, Pyramidobacter, Pseudo-
flavonifractor, Slackia and Eggerthela) were observed to 
have a noticeably higher association with tree nuts and 
fruits. Given that this is an indirect association study, the 
basis of such associations for many of these genera needs 
to be validated experimentally. It is interesting to note that 
two of  the identified genera (Bacteroides and Faecalibac-
terium) are in line with previous findings highlighting the 
impact of dietary patterns on their abundances [21, 34, 35]. 
It has been observed previously that Bacteroides is asso-
ciated with high protein-based animal-content rich diet, 
whereas dietary-fibre rich content (e.g. vegetables, fruits) 
causes an increase in the abundance of Faecalibacterium 
species [35].

Subsequently, a similar analysis was performed to eval-
uate whether the level of gut microbial co-occurrence/
mutual-exclusion networks is dependent on the country-
specific dietary habits (Additional file  16). Correlation 
between the various microbial network properties and 
Berry as well as HFD indices, measures for the number 
of food components consumed and health values of the 
food components, respectively, indicated interesting 
findings (Additional file  16). The observed decrease in 
the density of the co-occurrence network with increase in 
Berry index suggests that with increase in the variety (or 
diversity) of food consumption, there is a reduced func-
tional interdependency amongst the microbial commu-
nity. On the other hand, with the increase of HFD index, 
the key microbial players (hubs), represented as central 
nodes in the co-occurrence networks were found to have 
increased connections (i.e. higher network centraliza-
tion). This suggests that with increase in health value of 
the diet, the regulatory effect of the key microbial players 
on other microbes increases.

A probable reason for this could be that the increase 
in diet diversity could support varied groups of bacteria 
with diverse nutritional requirements. The positive cor-
relation between HFD index (as well as vegetable, meat, 
egg, and aquatic product consumption) with various net-
work properties of mutual exclusion networks indicates 

that the exclusion patterns among microbial genera 
increases with healthy food diet. On the other hand, 
the negative interactions amongst the microbes were 
found to decrease with increase in number of food items 
consumed (as indicated by Berry index).The observed 
negative correlation between the number of food items 
consumed and the network properties in both co-occur-
rence and co-inhibitory networks suggest that with 
increase in the variability of the nutritional sources (from 
the diet), the interdependencies amongst the microbial 
community not only decreases, but also abets competi-
tion (thereby supporting a diverse eco-system). The dif-
ferent food components were also observed to have 
distinct influences on the properties of the co-occurrence 
and mutual exclusion networks.

Discussion
The current computational analysis was performed with 
the objective of profiling not only the microbial com-
position landscape of gut microbiomes of individuals 
belonging to different geographies and age-groups, but 
also their microbial interaction patterns. To the best 
of our knowledge, this is the first study of its kind per-
formed on a large dataset (399 individuals from eight 
nationalities). The study indicated distinct geography 
as well as age-group specific trends, with respect to the 
composition, diversity and intra-group heterogeneity 
of gut microbial communities of individuals. However, 
unlike the signature trends in the community composi-
tion and diversity of gut microbes across geographies, 
the trends pertaining to gut microbial association/
mutual-exclusion networks were found to be relatively 
cross-geographic, with distinct geography specific 
trends in the overall network properties of gut microbi-
omes. These specific patterns could be due to the inher-
ent differences in the diet of individuals belonging to 
different nationalities. In order to evaluate whether the 
observed geography specific gut microbial networks 
are in accordance with the dietary habits of different 
nationalities, we attempted to investigate the relation-
ships between the composition and network properties 
of the gut microbiome for different nationalities and 
the corresponding population level dietary statistics. 
Since the dietary intake patterns of the subjects whose 
gut microbiomes were analyzed in the current analysis 
were not profiled in the original studies, we considered 
nation-specific diet intake patterns from the Food and 
Agricultural Organization of the United Nations infor-
mation repository (http://faostat3.fao.org/download/FB/
FBS/E). The analysis showed a correspondence between 
the per-capita intakes of the various food components 
across different nationalities (Additional file 17) and the 
respective gut microbiome structures.

http://faostat3.fao.org/download/FB/FBS/E
http://faostat3.fao.org/download/FB/FBS/E
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Interestingly, many patterns observed in the diet analy-
sis does corroborate with results from previous studies. 
For example, some genera belonging to Clostridia class, 
like Roseburia, Butyrivibrio, Eubacterium and Clostrid-
ium, were observed to be positively associated with the 
intake of meat (including fish), animal fat, milk, eggs and 
oils. This is in line  with previous studies [18, 36] which 
had shown that shifting to a high fat diet causes a shift in 
gut microbial composition having increased abundances 
of these specific genera. Faecalibacterium was observed 
to have a noticeably higher association with intake of veg-
etables and fruits as compared to other Firmicutes gen-
era like Roseburia and Eubacterium (Additional file 15), 
which is in line with the observation reported in a previ-
ous study [33]. The highest number of positive associa-
tions with different food items observed for Bacteroides 
could be a reflection of the high substrate versatility of 
species belonging to this genus. Notably, genome of Bac-
teroides thetaiotamicroton has been shown to encode 
more than 200 families of carbohydrate active enzymes, 
indicating a higher variation in its substrate preferences 
[37, 38]. In this regard, the most interesting observation 
made in the present study pertains to the differential 
association of dietary components with the driver gen-
era for the two well known enterotypes [7], namely 
Bacteroides and Prevotella. In contrast to the positive 
associations of Bacteroides with the wide range of dietary 
components (especially those rich in protein and animal 
diet), Prevotella was observed to be specifically associ-
ated with vegetarian contents like pulses, starchy roots, 
sugar crops and vegetables. This observation is in line 
with that obtained in a previous study which investigated 
the linkages between changes of gut microbial composi-
tion in individuals with long-term dietary patterns [34].

In addition, association between the intakes of vari-
ous food categories with the overall properties of the 
co-occurrence networks was more evident from the 
present study. It has been reported earlier that, based 
on the resources available in an environment, the func-
tional interdependence or the interactions between co-
occurring genera may be driven by metabolite exchanges 
between them [2]. In the present study, the density of 
the co-occurrence networks, indicative of the functional 
interdependencies, were observed to decrease with con-
sumption of food products like vegetables, eggs, tree 
nuts, fruits, milk, aquatic and sea food. On the other 
hand, the interdependencies amongst resident microbes 
in the gut were found  to increase with the consumption 
of meat, animal fats, cereals, pulses and sugars/sweeten-
ers. This is in accordance with the reported hypothesis 
of dysbiosis in the gut microbiome with consumption 
a high-fat-high-protein diet [18, 33, 36]. Interestingly, 
increased functional interdependencies with higher 

nutritional status have also been reported earlier [22]. 
Furthermore, the decrease in the functional interdepend-
ency amongst microbial community (network density) 
with food diversity could explain the apparent differences 
observed in the gut microbial co-occurrence networks 
for the Danish and the Spanish populations. Although 
belonging to the same continent, the Danish individu-
als were observed to have a much higher degree of func-
tional interdependence (in terms of the average degree of 
nodes) in their gut co-occurrence networks as compared 
to the Spanish individuals. This trend is explained by the 
differences in the dietary patterns between the Spanish 
and Danish populations. The Spanish population have 
an evenly distributed diet compared to Danish popula-
tion, indicated by a higher Berry Index as well as a higher 
HFD (Additional file 18). Previous studies have indicated 
that the microbes having similar nutrient preferences 
tend to co-occur together [39]. Consequently, the gut of 
individuals having a homogenous diet (that is dominated 
by specific constituents) is likely to favour the growth 
of inter-dependent species having strong co-occurrence 
relationships among each other. On the other hand, gut 
of individuals having a highly variable or diverse diets 
(in terms of the different constituents) are likely to result 
in the growth of diverse bacterial groups with different 
nutrient preferences having lesser functional interde-
pendence/competition among each other. The higher 
diversity in diet could therefore be a reason for the lesser 
interdependence among microbial genera observed for 
the Spanish individuals.

The most interesting observation of the current study 
is that the similarities in the genera level composition of 
interaction networks were not observed to be dictated by 
ethnicities or geographical proximity. A key example is 
the similarity between the microbial interaction networks 
of the Chinese and American populations (as compared 
to Japanese/Indian and European populations). The cross 
ethnicity similarities in the interaction patterns of gut 
microbiota is an interesting observation that requires fur-
ther validation and profiling of the environment, hygiene 
as well as life-style habits (including dietary intake) of 
individuals belonging to different nationalities.

Distinct similarities in the gut microbial interac-
tion networks, based on the age of the individuals were 
observed from the present study. Networks obtained for 
individuals below 30 years of age (G1–G3) were observed 
to be similar and distinct from those obtained for the age 
groups above 40  years. A key distinguishing factor was 
the increased functional interdependence between bacte-
rial groups in the networks in the higher age groups.

In spite being the first of its kind study, the current 
study has distinct limitations primarily pertaining to 
the composition of cohorts constituting the age-groups 
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and geographies. First, since some of the cohorts, espe-
cially those corresponding to French and Italian popula-
tions, have lower sample size, the reliability of the results 
obtained are specifically lower for these nationalities. 
Further, there is an inherent bias in the composition of 
individuals constituting the age-wise cohorts below 
10  years of age, which primarily belonged to Indian 
nationality. Furthermore, sub-population specific biases 
could also occur in the diet-microbiota association analy-
sis performed in the current study. This is because, while 
the dietary intake patterns used in the current study are 
population-level statistics obtained for entire nationali-
ties, the gut microbiomes are only obtained from specific 
individuals in distinct neighbourhoods of a given coun-
try. Given the global nature of this study, as well as a more 
or less even representation of individuals in a majority of 
cohorts, a concordance was observed between the results 
obtained in the current study with previous reports, 
potential biases mentioned above. These inferences from 
the current study are likely to form the basis for future 
metagenomic investigations across much larger cohorts 
of individuals from specific regions.

Conclusions
The present study reports a comprehensive analysis of gut 
microbial composition of individuals belonging to differ-
ent geographies and age-groups, as well as the microbial 
interaction patterns in these microbiomes. Although a 
conserved group of genera was found to inhabit most of 
the datasets analyzed, a clear geography-specific trend of 
microbial composition was also noted. Inter-individual 
heterogeneity in the composition of gut microbial com-
munities also exhibited geography specific variations. 
Analysis of microbial interaction networks pertaining 
to the analyzed gut microbiomes from different geog-
raphies revealed that despite the presence of equivalent 
number and types of genera in these networks, the con-
nectivities (i.e. the set of interactions) can drastically 
vary across geographies. A meta-analysis incorporat-
ing population level dietary information, indicated the 
probable role of dietary habits in shaping the gut micro-
biome composition as well as the inter-microbial interac-
tions. The findings from the present study also indicate 
that the gut microbiota becomes more diverse with age, 
wherein several genera with similar functional profiles 
such as alkaliphiles, opportunistic pathogens, and sulfate 
reducers tend to co-occur specifically in the gut micro-
biomes of the middle-aged and elderly. The inferences 
drawn from this study are expected to form the basis for 
future metagenomic investigations involving much larger 
cohorts from various regions/age-groups/health-status, 

and can potentially lead to translational outcomes such 
as dietary/therapeutic recommendations.

Methods
Datasets used
Publicly available 399 gut metagenomes were down-
loaded from the following sources. Assembled contigs 
corresponding to 90 American gut metagenomes were 
downloaded from the HMP DACC website (http://
www.hmpdacc.org/HMASM/) (Table  1 in Additional 
file 19). These metagenomes were sequenced as part of 
the human microbiome project (HMP) and previously 
analyzed by Ghosh et  al. [6]. Contigs corresponding 
to gut metagenomes belonging to the French, Italian 
and Japanese individuals, previously analyzed by Aru-
mugam et  al. [7], were downloaded from http://www.
bork.embl.de/Docu/Arumugam_et_al_2011/down-
loads.html. Gut metagenomic contigs corresponding 
to 81 Danish and 35 Spanish individuals, previously 
analyzed by Qin et  al. [4], were obtained from http://
gutmeta.genomics.org.cn/. Assembled contigs from 
144 Chinese gut metagenomes, previously studied by 
Li et  al. [8], were downloaded from http://gigadb.org/
dataset/100036. In addition, gut metagenomes from 22 
Indian children, previously analyzed by Gupta et al. [6] 
and Ghosh et  al. [22], were downloaded from http://
www.ncbi.nlm.nih.gov/Traces/sra. Since the lengths of 
the sequences constituting these metagenomes were 
comparatively smaller (about 400 base pairs), an addi-
tional step of sequence assembly was performed on 
each of these datasets for obtaining longer contigs. 
The nation-specific dietary pattern data was obtained 
from the website of the Food and Agricultural Organi-
zation of the United Nations (http://faostat3.fao.org/
download/FB/FBS/E).

Previous studies have noted that a major concern with 
using samples from multiple studies is the presence of 
study-specific biases [40]. To address this issue, we have 
performed several analysis (Additional file  19) in order 
to be sure that such biases in the datasets used (wher-
ever present) do not significantly effect the results of this 
study.

Relative homogeneity of gut microbiomes 
across individuals from various nationalities/age‑group
The homogeneity of gut microbial community across 
individuals from a specific geography/age-group was 
obtained using Jaccardian indices. For a given geography/
age-group, pair wise Jaccardian indices were obtained 
from the corresponding gut genera profiles using the fol-
lowing formula:

http://www.hmpdacc.org/HMASM/
http://www.hmpdacc.org/HMASM/
http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html
http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html
http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html
http://gutmeta.genomics.org.cn/
http://gutmeta.genomics.org.cn/
http://gigadb.org/dataset/100036
http://gigadb.org/dataset/100036
http://www.ncbi.nlm.nih.gov/Traces/sra
http://www.ncbi.nlm.nih.gov/Traces/sra
http://faostat3.fao.org/download/FB/FBS/E
http://faostat3.fao.org/download/FB/FBS/E
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where, Genus11 are number of pairs of datasets in which 
the genus is present in both.

Genus10 and Genus01 are number of pairs of datasets 
where genus is present in one member of the pair and 
absent in another one.

Jaccard distance was then calculated using the formula,

Thus, Jaccardian indices would be higher in individuals 
(belonging to a specific nationality/age-group) having rel-
atively higher homogeneity (that is relatively lesser varia-
tion) across their gut microbial community structure.

Profiling complexity of gut microbiomes belonging 
to different groups of individuals using Shannon diversity 
indices
While relative homogeneity indicates intra-sample vari-
ability across gut microbiomes of a given group, Shannon 
diversity indices provide measures of how complex the 
microbiomes are in terms of the abundances of various 
taxonomic groups. For each gut microbiome, the Shan-
non diversity indices were computed as:

where, N is total number of genera and μi is the propor-
tion of microbiomes belonging to the ith genera.

Identifying group specific signatures of gut microbial 
composition
For identifying groups of genera that are significantly 
over or under represented in different groups, the 
abundance values of various genera in the gut microbi-
omes of each group were compared with those belong-
ing to all other groups. For this purpose, the STAMP 
analysis pipeline [41] was used. The comparisons were 
performed using Welch’s t-test (with multiple test cor-
rections and false detection rate obtained using Benja-
mini Hochberg tests). Differentially abundant genera 
with corrected p value less than 0.001 were identified to 
be significantly over- or under-represented in the given 
group.

Network inference methodology
Obtaining genera abundance matrices corresponding to gut 
microbiomes of individuals belonging to a nationality
Metagenomic contigs corresponding to each gut micro-
biome were taxonomically classified using the approach 

JaccardIndex =
Genus11

Genus11 + Genus01 + Genus10

Jaccarddistance = 1− JaccardIndex

H
′

= −

N∑

i=1

µilnµi

adopted by Ghosh et  al. [22]. In this approach, a simi-
larity search of the metagenomic contigs was first per-
formed against a reference database of 2352 bacterial/
archaeal genomes [22]. BLASTn output thus obtained 
was filtered (hits with percentage identity >65 and e value 
<10e−10 were retained). Filtered results were provided 
as input to the DiScRIBinATE method [42] for obtaining 
the final taxonomic assignment of the metagenomic con-
tigs (constituting each dataset).

The abundance profile of various bacterial groups (at 
genera level) for each gut microbiome was obtained as 
described in Additional file 20. Genera that were identi-
fied in at least 30 % of the metagenomes were only con-
sidered for subsequent analysis (genera absent in 70  % 
of datasets were filtered out). This was done to limit the 
number of ‘zero abundance values’, which may other-
wise lead to false/biased correlation results. The abun-
dance profiles of bacterial genera in the gut microbiomes 
belonging to the different nationalities were then grouped 
separately and represented as separate abundance matri-
ces (for each nationality).

Obtaining gut microbial interaction networks for different 
nationalities
For individuals belonging to each nationality, corre-
sponding abundance matrix was provided as input to 
the network analysis tool (NAMAP) developed as part 
of this study (described in Additional file  20). The cen-
trality measures of the microbial interaction networks 
were calculated using the i-graph module (C language) 
[43], whereas network visualization was performed using 
cytoscape and community-analyzer [44, 45]. The gut 
microbial networks for the corresponding nationality 
were then inferred using the following strategy. Correla-
tions between each pair of genera were calculated using 
the Spearman’s ranked correlation coefficients. The sta-
tistical significance of each of these correlations was then 
obtained using the ReBoot approach implemented in the 
CoNet method [1, 22].

This approach finds the statistical significance of a 
given correlation (between a given pair of genera) by 
comparing the ReSampling and null distributions of cor-
relation values (obtained from the given abundance val-
ues). These distributions were obtained by performing 
100,000 iterations.

The correlation values obtained for both these distribu-
tions were then compared using the z-score (described 
in Additional file 20). Co-occurring and mutually exclu-
sive pairs of genera were identified as those for which 
obtained z-score was greater than 1.96 and less than 
−1.96, respectively (i.e. with P < 0.01). The co-occurrence 
and mutual exclusion interaction networks were then 
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constructed with genera as nodes and edges between 
the co-occurring and mutually exclusive pairs of genera, 
respectively.

Eight gut inter-microbial interaction networks were 
thus obtained. For each network, various network prop-
erties were computed and compared (Additional file 4).

Analysis based on age groups
Except for American samples (for which age information 
was unavailable), the samples were grouped based on the 
age of individuals from various nationalities. Six groups 
were formed (Table  1). The method described in the 
above section was followed to further analyze the groups.

Associating the dietary patterns corresponding to the 
different nationalities with the structure and network 
properties of the gut microbiomes
In order to investigate whether (and if so, how much) 
the nation-specific dietary patterns influenced the 
structure and the network properties of gut microbi-
omes (across various nationalities), a PLS regression 
based analysis was performed. Since the diet data for 
most of the microbiomes used in the current study were 
unavailable (that is, not recorded in the original studies 
on these microbiomes), the nation-specific dietary pat-
tern data was obtained from the website of the Food and 
Agricultural Organization of the United Nations (http://
faostat3.fao.org/download/FB/FBS/E). This informa-
tion repository contains the production, consumption, 
export as well as the consumption of the various food 
items for around 113 countries. From this repository, 
nation specific intake of the dietary consumption pat-
terns of the various food items corresponding to the 
8 different nationalities was filtered out (Additional 
file  18). Further, from these dietary patterns, the over-
all variability in the diets of the various nationalities 
was then quantified using two different food diversity 
indices namely, Berry index and healthy food diver-
sity (HFD) index. While Berry index just considers the 
increase in number of food components, HFD also con-
siders their value [32]. Subsequently, a PLS regression 
was performed with the overall dietary diversity as well 
as the consumption patterns of the various dietary com-
ponents as predictor variables and the median genera 
abundances and the network properties of the gut co-
occurrence and mutual exclusion networks (Table 1) as 
the response variables for the various nationalities.
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detection profiles within the gut microbiomes of individuals belonging 
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Additional file 3: Heatmap showing the normalized abundances of 
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that the genus is either absent or present in low abundance, whereas the 
green color signifies that it is highly abundant.
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ratio of mean proportions to be 1.5. All tests were performed using the 
STAMP analysis package.

Additional file 8: Heatmap showing the normalized abundances of 
major genera in the gut microbiomes of Chinese individuals. Only those 
genera, present in at least 40 % of the individuals with a minimum 
abundance of 0.05, have been shown in the heatmap. Red color signifies 
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green color signifies that it is highly abundant.
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gut microbiomes of the Japanese Individuals as compared to those of the 
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with P-value < 0.05, corrected using Benjamini-Hochberg FDR method for 
multiple test corrections. Further stringency was established using mean 
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