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Comparative genomics analyses 
revealed two virulent Listeria monocytogenes 
strains isolated from ready-to-eat food
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Abstract 

Background: Listeria monocytogenes is an important foodborne pathogen that causes considerable morbidity 
in humans with high mortality rates. In this study, we have sequenced the genomes and performed comparative 
genomics analyses on two strains, LM115 and LM41, isolated from ready‑to‑eat food in Malaysia.

Results: The genome size of LM115 and LM41 was 2,959,041 and 2,963,111 bp, respectively. These two strains shared 
approximately 90% homologous genes. Comparative genomics and phylogenomic analyses revealed that LM115 and 
LM41 were more closely related to the reference strains F2365 and EGD‑e, respectively. Our virulence profiling indi‑
cated a total of 31 virulence genes shared by both analysed strains. These shared genes included those that encode 
for internalins and L. monocytogenes pathogenicity island 1 (LIPI‑1). Both the Malaysian L. monocytogenes strains also 
harboured several genes associated with stress tolerance to counter the adverse conditions. Seven antibiotic and 
efflux pump related genes which may confer resistance against lincomycin, erythromycin, fosfomycin, quinolone, 
tetracycline, and penicillin, and macrolides were identified in the genomes of both strains.

Conclusions: Whole genome sequencing and comparative genomics analyses revealed two virulent L. monocytogenes 
strains isolated from ready‑to‑eat foods in Malaysia. The identification of strains with pathogenic, persistent, and antibi‑
otic resistant potentials from minimally processed food warrant close attention from both healthcare and food industry.
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Background
Listeria monocytogenes (L. monocytogenes) is a Gram-
positive, motile, rod-shaped bacterium that is ubiqui-
tous in nature. It is an emerging foodborne pathogen and 
causes human listeriosis which can be a life-threatening 
illness particularly in elderly, pregnant women, new-
borns, and immunocompromised patients [1]. Listeriosis 
has been detected in many geographical regions, particu-
larly in USA and Europe [1]. Although the occurrence of 
L monocytogenes in foods has been detected in Malaysia, 
cases of listeriosis are rarely reported [2, 3].

Human listeriosis has been associated with the con-
sumption of contaminated raw, processed, and ready-
to-eat foods (RTE) [3]. Since L. monocytogenes is able 

to survive in a wide range of adverse conditions such as 
low temperature (2–4 °C), low pH, and low water content 
[4], it may outcompete other microorganisms in acidic 
and refrigerated food, as well as food that are preserved 
through salting, sugaring and drying. Furthermore, the 
increasing demand for fresh and minimally processed 
foods by consumers has increased the risk of listerosis as 
such foods contain low levels of preservative which can 
inhibit the growth of L. monocytogenes [5].

Serotyping based on the somatic (O) and flagellar (H) 
antigens has identified 13 serotypes (1/2a, 1/2b, 1/2c, 
3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e, and 7) in L. monocy-
togenes [6]. The majority of the human listeriosis cases 
were associated with serotype 4b, 1/2a, 1/2b, and 1/2c 
[7]. The pathogenicity of these serotypes is mainly attrib-
uted to the presence of the Listeria pathogenicity island 
1 (LIPI-1) which harbours several important virulence 
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genes (prfA, plcA, hly, mpl, actA, plcB). This array of 
genes promotes cytosolic proliferation as well as intra- 
and intercellular movement, which are the key processes 
in the intracellular parasitic life cycle of L. monocytogenes 
[8]. Besides, L. monocytogenes also carries inlA and inlB 
gene which encode for internalins that help in adherence 
to and invasion of host cells [9].

Listeria monocytogenes is naturally susceptible to a 
wide range of clinically-relevant antibiotics except for 
quinolone, fosfomycin and cephalosporins [10]. However, 
resistance to single or multiple antibiotics has increas-
ingly been reported for food strains [3, 11]. The occur-
rence of resistant strains might be a consequence of food 
contamination by the food handlers or from the contami-
nated food processing plants. Apart from that, the use of 
antibiotics in livestock as growth promoter or for disease 
treatment and prevention may act as a selective pressure 
for emerging resistant strains which may be zoonotically 
transferred to humans via food consumption [12]. Given 
the severity of listeriosis, the emergence of antibiotic 
resistant L. monocytogenes poses a major health concern 
in both food safety and public health.

The availability of complete genome sequence of L. 
monocytogenes allows comparative genomics analyses 
to be performed, which shed light on the genetic basis 
underlying the virulence and adaptability of this food-
borne pathogen. New genomic data is needed to extend 
our understanding on the pathogenicity of this organism. 
This new genomic information may help in the devel-
opment of new control method through identification 
and discovery of new virulence-associated genes. In this 
study, we sequenced and analysed two L. monocytogenes 
strains isolated from RTE food in Malaysia to elucidate 
their virulence potential. Genomic comparison was also 
performed between the studied strains and three other 
reference strains to gain insights into the evolutionary 
relationships of these bacteria.

Methods
Bacteria strains and genomic DNA extraction
LM115 and LM41 were isolated from fried fish and 
salad, respectively, that were purchased from a Malaysian 
street-side hawker stall in 2011 as previously described 
[2]. The strains were cultivated in Trytic soy medium 
(Oxoid, Basingstoke, UK) and preserved at −80 °C in 50% 
glycerol. The genomic DNA was extracted from a pure 
culture using DNeasy Blood & Tissue kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instruction.

Whole genome sequencing, assembly, and annotation
Whole genome sequencing of the L. monocytogenes 
strains was performed on an Illumina HiSeq  2000 

platform. The generated sequence reads were trimmed, 
quality-checked, and assembled de novo using CLC 
Genomics Workbench 5.1 (CLC Bio, Denmark) as pre-
viously described [13]. A total of 28 and 11 contigs with 
the coverage of 98× and 101× were generated for LM115 
and LM41, respectively. These contigs were mapped and 
reordered against L. monocytogenes EGD-e (1/2a) using 
Mauve [14]. Assembled sequence was then submitted 
to the Rapid Annotation using Subsystem Technology 
(RAST) server [15] for annotation. The number of rRNA 
was predicted using RNAmmer 1.2 server [16] whereas 
the numbers of tRNA and tmRNA were gleaned through 
ARAGORN [17].

Comparative genomics and phylogenomic analysis
Comparative genomics analysis was performed among 
the two Malaysian L. monocytogenes strains, L. monocy-
togenes strain EGD-e (1/2a), F2365 (4b), and L. innocua 
CLIP 11262 (6a) by identifying and comparing the 
homologous and orthologous genes of these five strains 
using Pan-Genomes Analysis pipeline (PGAP) [18]. 
BLAST ring image generator (BRIG) was also used for 
the genomes comparison by performing BLASTn (70 
and 50% upper and lower identity threshold, respec-
tively), using strain EGD-e as the reference. Cluster of 
orthologous group (COG) analysis was performed by 
assigning all representative protein sequences from 
each orthologous protein cluster based on local BLASTp 
against COG database. To study the phylogenetic rela-
tionship of LM115 and LM41, the genomes of 15 other 
Listeria strains were also included for comparison. 
The strains and GenBank accession numbers are as fol-
lows: EGD-e (NC_003210), F6854 (AADQ01000001), 
H7858 (AADR01000001), HCC23 (NC_011660), 
SLCC2376 (NC_018590), F2365 (NC_002973), LM201 
(AYPT01000001), Clip80459 (NC_012488), SLCC2540 
(NC_018586), S1_4 (JWHI01000001), SLCC7179 
(NC_018593), LM3136 (NZ_CP013723), Scott A 
(CM001159), FSL N3-165 (AARQ02000001), Clip11262 
(NC_003212). All these strains belong to the pathogenic 
serotypes (4b, 1/2a, 1/2b, and 1/2c) except for HCC23 
(4b), SLCC2376 (4c), and Clip11262 (6a) which serve as 
an outgroup. A single-nucleotide polymorphism (SNP) 
based phylogeny tree, using strain EGD-e as the reference 
genome, was inferred by CSI Phylogeny 1.4. [19] using 
the default parameters. Briefly, SNPs were called by map-
ping the genomes of the studied strains to that of the ref-
erence. Site validation of the called SNPs was performed 
and a phylogeny tree was inferred based on the concat-
enated alignment of the quality-checked SNPs. The phy-
logeny tree inferred was viewed using FigTree software 
(http://tree.bio.ed.ac.uk/software/figtree/).

http://tree.bio.ed.ac.uk/software/figtree/
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Virulence factors and antimicrobial resistance genes 
identification
Virulence genes were predicted by performing a BLAST 
search of LM115 and LM41 genomes against the Viru-
lence Factors of Pathogenic Bacteria database (VFDB) 
[20]. For antimicrobial resistance genes detection, the 
whole genome sequences of LM115 and LM41 were 
uploaded to the Resistance Gene Identifier (RID) of the 
Comprehensive Antibiotic Resistance Database (CARD) 
[21]. The predicted genes were then validated by perform-
ing BLASTp against both the non-redundant (nr) and 
Swiss-Prot database with 60% coverage and 60% sequence 
identity as the threshold. If results of the two databases 
conflicted, a priority order of nr, Swiss-Prot was followed.

Quality assurance
Standard biochemical tests (Gram staining, catalase, oxi-
dase, urea, SIM, TSI, and MR-VP) and species-specific 
PCR were used to confirm the identity of both L. monocy-
togenes strains LM115 and LM41 as previously described 
[2]. Genomic DNA was extracted from a single colony of 
the pure bacterial culture. Potential contamination of the 
genomic library by foreign DNA was assessed using the 
CLC Genomics Workbench 5.1 (CLC Bio, Denmark) as 
previously described [13].

Results and discussion
General genome features
The predicted genome sizes of LM115 and LM41 are 
2,959,041 and 2,963,111 bp, respectively. The G + C con-
tents of the two genomes are approximately 38%. The 
number of tRNA is 51 and 60 for LM115 and LM41, 
respectively. Both strains carry three rRNA and one 
tmRNA. A total of 2913 and 2951 coding sequences 
(CDS) were predicted for LM115 and LM41, respectively. 
The genome features of the two strains are summarized 
in Table 1.

Comparative genomics and phylogenomic analysis
Whole genome comparison of the two Malaysian  
L. monocytogenes strains with L. monocytogenes EGD-e, 

F2365, and L. innocua Clip11262 revealed a total of 2497 
shared ORFs, which accounted for approximately 82% 
of the total ORFs present in each of the studied strains. 
LM41 was genetically more similar to EGD-e, a deriva-
tive of an animal isolate EGD that was used in cell-
mediated immunity studies [22]. This genetic similarity 
was depicted in the circular genomic map of genomes 
comparison (Fig.  1) where LM41 showed high genome 
identity (>70% nucleotide identity) to EGD-e, except 
for two major regions in EGD-e, ranging from approxi-
mately 1132–1152  kb and 2362–2385  kb. These regions 
carried genes that encode for various proteins, includ-
ing hypothetical proteins, cadmium resistance protein, 
and phage-related proteins. In contrast, LM115 showed 
less genomic similarity with EGD-e but was more closely 
related to F2365, a cheese isolate from a Californian out-
break in 1985 [23] (Fig. 1).

Pairwise comparison showed that LM115 and LM41 
shared approximately 90% of their total ORFs. The core 
and unique genes of LM115 and LM41 were further ana-
lysed according to various classes of Cluster of Ortholo-
gous Groups (COGs) (Fig.  2). Our results showed that 
genes from COG class J (Translation, ribosomal structure 
biogenesis), class C (Energy production conversion), class 
E (Amino acid transport metabolism), class F (Nucleotide 
transport metabolism), and class H (Coenzyme transport 
metabolism) were abundant in the core genome. On the 
other hand, the unique genes were mostly associated 
with class M (Cell wall/membrane/envelope biogenesis), 
class V (Defence mechanism), and class L (Replication, 
recombination conversion). Detailed genome analy-
sis showed that LM115 and LM41 carried a total of 95 
and 116 strain-specific genes, respectively. Other than 
genes related to the mentioned COG classes (M, V, and 
L), most of the unique genes encode for hypothetical 
proteins. To note, these strain-specific hypothetical pro-
teins might carry functions relevant to specific adaptive 
or fitness advantages, despite the fact that their functions 
remain uncharacterized.

Our SNP-based phylogenomic analysis showed that 
LM41 and LM115 were closely related to the reference 
strain EGD-e and F2365 (Fig. 3), respectively, consistent 
with the findings of our comparative genomics discussed 
earlier (Fig.  1). LM115 was also shown to be closely 
related to two serotype 4b strains, LM201 and Scott A. 
LM201 is isolated from foodstuffs in China whereas Scott 
A is a clinical isolate from the Massachusetts listeriosis 
outbreak in 1983 [24, 25]. The phylogenomic tree also 
revealed the separation of LM115 and LM41 into two 
different clades. Since SNPs were used to infer the phy-
logeny relationship of these strains, this observation indi-
cated a possibly high genetic variation in the genomes of 
LM115 and LM41.

Table 1 General genome features of  Listeria monocy-
togenes, LM115 and LM41

LM115 LM41

Chromosome size (bp) 2,959,041 2,963,111

GC (%) 37.85 37.82

Number of CDS 2913 2951

Number of rRNA 3 3

Number of tRNA 51 60

Number of tmRNA 1 1
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Virulence genes profiling
Several virulence genes found in Listeria spp. were shared 
between LM115 and LM41. These included the Listeria 
pathogenicity island (LIPI-1) and several internalins. The 
LIPI-1 plays a major role in the pathogenicity of L. mono-
cytogenes and consists of six genes that are important for 
phagosomal escape (hly, plcA, plcB, mpl), motility and 
cell-to-cell spread (act), and gene regulation (prfA) [8]. 
Six internalins genes (inlA, inlB, inlC, inlK, inlF, inlJ) 
were identified in both LM115 and LM41. These interna-
lin genes are involved in invasion (inlA, inlB), adherence 
(inlF, inlJ), cell-to-cell spread (inlC), and autophagy eva-
sion (inlK) [9, 26, 27]. Other virulence factors that were 
annotated in the genomes of both LM115 and LM41were 
bile salt hydrolase (bsh) which provides resistance to the 
acute toxicity of bile salt in the host intestine and autoly-
sis amidase (ami) which plays a role in host cells adhesion 
[28, 29]. All the virulence genes identified in both LM115 
and LM41 were also present in the pathogenic reference 
strains EGD-e and F2365.

Stress tolerance
Listeria monocytogenes can encounter various stresses 
due to the different food processing methods such as 
heating, chilling, and sugaring. The ability of this patho-
gen to adapt to and overcome these stresses is contrib-
uted by their stress tolerance proteins. A number of 
genes encoding stress response proteins were identified 
in LM115 and LM41 (Table  2). Both strains carried the 
glutamate decarboxylase (GAD) operon and arginine 
deiminase (ADI) operon that are involved in acid toler-
ance. The GAD system increases the pH of cytoplasm 
by utilizing intracellular proton during the conversion 
of glutamate to ϒ-aminobutyrate (GABA) [30]. The 
ADI system, on the other hand, alleviates the acidity of 
cytoplasm by combining intracellular proton with the 
system’s by-product (NH3) to release ammonium ion 
(NH4

+) [31]. Both these systems may provide competitive 
advantage to L. monocytogenes to survive in food with 
low pH which can usually limit bacterial growth. In fact, 
the role of the GAD system in acid tolerance had been 

Fig. 1 Circular genomic map and genome comparison of L. monocytogenes LM115, LM41, EGD‑e, F2365, and L innocua Clip11262. The inner ring 
shows coordinate in scale and the total genome size of the reference sequence, EGD‑e. The black histogram bar represents G + C content whereas 
the purple‑green histogram bar represents G + C skew. Coloured arches representing orthologous regions of each genome in respect to EGD‑e (red 
arch) and are shown in the following order (inside to outside): EGD‑e (red), F2365 (blue), Clip11262 (yellow), LM115 (green), LM41 (purple)



Page 5 of 8Lim et al. Gut Pathog  (2016) 8:65 

Fig. 2 COG distribution of core and unique genes of LM115 and LM41. The vertical axis represents the percentage of genes (core, orthologous and 
singleton) distributed to specific COG class between LM115 and LM41 whereas the horizontal axis represents different functional classes of COG

Fig. 3 SNP‑based phylogeny tree of 17 Listeria strains. The phylogeny tree was generated using CSI Phylogeny 1.4 [19]. Single nucleotide polymor‑
phisms (SNPs) of each strain were called by mapping the genome sequence to that of the reference. The quality‑checked SNPs were then concat‑
enated and used to infer a maximum‑likelihood tree. The “Reference” refers to the Reference strain L. monocytogenes EGD‑e



Page 6 of 8Lim et al. Gut Pathog  (2016) 8:65 

demonstrated in acidified skim milk [32] and cheese 
[33]. Besides, LM115 and LM41 also harboured several 
cold and heat shock proteins related genes which protect 
bacteria from cell damage induced by temperature stress 
[34, 35]. Foods stored in low temperature or processed 
with high heat, such as frozen burger patties and fried 
chickens, had been reported to contaminated with L. 
monocytogenes in Malaysia [2, 36]. Moreover, BetL, Gbu, 
and OpuC transport systems which play a major role 
in L. monocytogenes osmotic stress response were also 
annotated in the genomes of LM115 and LM41. These 
three systems are involved in the uptake of betaine and 

carnitine that balance the intracellular and extracellular 
osmotic stress [37], allowing L. monocytogenes to survive 
in food preserved in low water content. Gene encoding 
the sigma-B regulator protein (SigB) which regulates var-
ious stress responses such as osmotic and temperature 
stress was also identified in LM115 and LM41.

Antibiotic resistance determinants
Both LM115 and LM41 carried similar antibiotic resist-
ance related genes in their genomes. The tetA gene 
which is related to tetracycline resistance was found in 
both strains. Although an association of tetM to tetracy-
cline resistance was more commonly reported, tetA had 
also been identified in strains isolated from fish samples 
[38, 39]. Additionally, LM115 and LM41 also harboured 
mecC gene which could confer resistance to beta-lactam 
drugs. Beta lactam antibiotics such as ampicillin and 
penicillin, in combination with aminoglycosides, remain 
the primary therapeutic option for human listeriosis [40]. 
Resistance to beta lactam drugs could challenge the cur-
rent treatment option in effectively treating the disease. 
Apart from that, genes encoding for lincomycin resist-
ance protein (lmrB), fosfomycin resistance protein (fosX), 
and erythromycin resistance ATP-binding protein (msrA) 
were also identified in both strains. Furthermore, two 
efflux pump-related genes, lde and mdrL, which con-
fer resistance to quinolone and macrolides, respectively, 
were also identified in the two genomes.

A few recent reports have documented the isolation of 
resistant L. monocytogenes strains against one or more anti-
biotics in Malaysia [3, 9]. The isolation of resistant strains 
from food is an important health risk as these strains could 
be transmitted to humans via food contamination. The 
identification of multiple antibiotic resistance genes in 
LM115 and LM41 further reiterates the importance of food 
practice to prevent the dissemination of this pathogen.

Conclusions
Our comparative genomics analyses identified approxi-
mately 90% homologous genes between LM115 and 
LM41. Both LM115 and LM41 showed a close phyloge-
netic relationship with the pathogenic reference strains 
F2365 and EGD-e, respectively. Based on our initial 
genomic analysis, several virulence genes such as those 
encode for LIPI-1 and internalins were shared between 
the two strains. Both LM115 and LM41 harboured sev-
eral stress tolerance genes which may help them to sur-
vive through various stresses imposed by different food 
processes. Additionally, a number of antibiotic resist-
ance genes were also found in the two genomes. The 
occurrence of virulent and antibiotic resistant L. mono-
cytogenes strains with significant stress tolerance in RTE 
food poses a great concern for food safety. Functional 

Table 2 Stress response genes identified in Listeria mono-
cytogenes LM115 and LM41

+ Represents the presence of stress response gene

Environmental stress Gene LM115 LM41

General

 Sigma‑B regulator protein sigB + +
Acid

 Glutamate decarboxylase system gadD1 + +
gadD2 + +
gadD3 + +
gadT1 + +
gadT2 + +

 Arginine and agmatine systems lmo0036 + +
lmo0037 + +
lmo0038 + +
lmo0039 + +
lmo0040 + +
lmo0041 + +
lmo0042 + +
lmo0043 + +

Temperature

 Cold shock protein cspA + +
cspB + +
cspD + +

 Heat shock protein dnaK + +
dnaJ + +
hrcA + +
grpE + +

Water

 Osmotolerance proteins gbuA + +
gbuB + +
gbuC + +
opuCA + +
opuCB + +
opuCC + +
opuCD + +
opuD + +
betL + +
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genomic studies are required to study the association of 
these genes to the persistence and pathogenicity of these 
strains.
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