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Abstract 

Background: Bacillus cereus is well known as a gastrointestinal pathogen that causes food‑borne illness. In the 
present study, we sequenced the complete genome of B. cereus FORC_013 isolated from fried eel in South Korea. To 
extend our understanding of the genomic characteristics of FORC_013, we conducted a comparative analysis with 
the published genomes of other B. cereus strains.

Results: We fully assembled the single circular chromosome (5,418,913 bp) and one plasmid (259,749 bp); 5511 
open reading frames (ORFs) and 283 ORFs were predicted for the chromosome and plasmid, respectively. Moreover, 
we detected that the enterotoxin (NHE, HBL, CytK) induces food‑borne illness with diarrheal symptom, and that the 
pleiotropic regulator, along with other virulence factors, plays a role in surviving and biofilm formation. Through com‑
parative analysis using the complete genome sequence of B. cereus FORC_013, we identified both positively selected 
genes related to virulence regulation and 224 strain‑specific genes of FORC_013.

Conclusions: Through genome analysis of B. cereus FORC_013, we identified multiple virulence factors that may 
contribute to pathogenicity. These results will provide insight into further studies regarding B. cereus pathogenesis 
mechanism at the genomic level.
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Background
For several decades, food-borne illnesses caused by 
microorganisms have attracted political and media 
attention around the world [1], because outbreaks 
of these diseases have a strong association with pub-
lic health problems such as hospitalizations and even 
deaths [2, 3]. Preventing these illnesses is challenging, 
involving a complicated process rather than simple 
conventional methods [4]. Therefore, it is essential that 
we elucidate the phenotypic and genotypic features 

of agents that cause outbreaks. Among a variety of 
organisms that can cause food-borne illness, Bacillus, 
which is characterized by several features—a gram-
positive, rod-shaped, motile, spore-forming and aero-
bic-to-facultative—has been considered an important 
opportunistic pathogen and may be categorized as (1) 
gastrointestinal pathogens inducing emetic and diar-
rheal symptoms and (2) systemic and local infections 
associated with the respiratory tracts of immunologi-
cally compromised patients and neonates [5, 6]. There 
were food poisoning outbreaks from consuming food 
including meat, soups, vegetable dishes, dairy prod-
ucts, and seafood that were contaminated with Bacillus 
cereus [7, 8]. Especially, B. cereus spore, which survives 
within the small intestine of the host, has a connection 
with food-borne illness inducing diarrheal symptom [9, 
10]. A recent study reported that enterotoxins might 
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cause diarrheal food-borne illness, including hemolysin 
BL (HBL), non-hemolytic enterotoxin (NHE) and cyto-
toxin K (CytK) [7, 11]. Although many research efforts 
have focused on the food-borne diseases caused by B. 
cereus, little genomic research of this species has been 
conducted into the mechanism of toxicity leading to 
food poisoning.

In the present study, we sequenced the complete 
genome of B. cereus FORC_013, to better understand 
its pathogenesis at the genomic level, which was iso-
lated from fried eel in South Korea. Using this sequence 
data, we assembled the complete genome of B. cereus 
FORC_013 and determined its genomic characteristics. 
Then, we conducted a comparative genome analysis of 
the FORC_013 with the complete sequences of 29 other 
B. cereus strains to gain more information of this strain. 
These results may be useful in elucidating the patho-
genicity of B. cereus and its role in food poisoning.

Methods
Sample collection, strain isolation, and whole genome 
sequencing
Bacillus cereus FORC_013 was isolated from fried eel in 
South Korea and cultivated in Brain Heart Infusion (BHI; 
Difco, Detroit, MI, USA) medium. Genomic DNA was iso-
lated and purified using the MoBio UltraClean Microbial 
DNA Isolation Kit (MoBio, Carlsbad, CA, USA) follow-
ing the manufacturer’s recommendations. Approximately 
5  μg of genomic DNA was cut into 8–12  kb fragments 
using the Hydroshear system (Digilab, Marlborough, MA, 
USA). SMRTbell libraries were prepared for each sample 
using the DNA Template Prep kit 2.0 (3–10 kb) for SMRT 
sequencing which was carried out with C2 chemistry on a 
PacBio RS II system (Pacific Bioscience, Menlo Park, CA, 
USA). The AMPure XP bead purification system (Beck-
man Coulter, Brea, CA, USA) was used to purify libraries 
by removing small fragments (<1.5 kb). An Agilent 12,000 
DNA kit (Applied Biosystems, Santa Clara, CA, USA) 
was used to characterize the size distribution of sheared 
DNA templates. Sequencing primers were annealed to the 
templates and DNA polymerase enzyme C2 was added 
following the manufacturer’s instructions. Loading the 
enzyme template-complexes and libraries onto 75,000 
zero-mode waveguides (ZMWs) was conducted using 
DNA/Polymerase Binding kit P4 (Pacific Bioscience) 
according to the manufacturer’s instructions. SMRTbell 
library sequencing using a 120-min sequence capture pro-
tocol with PacBio RS II to maximize read length via the 
DNA sequencing kit Reagent 2.0 (Pacific Bioscience). The 
summary of sequencing result is contained in Additional 
file 1.

Genome assembly and annotation
Whole genome assembly was performed using the SMRT 
portal system. Sequencing reads from the PacBio RS 
II system were assembled using the HGAP assembly-3 
algorithm with curation of the genome size parameter 
which was set to 3  Mb using the Compute Minimum 
Seed Read Length option while other parameters were 
set to default [12]. Sequencing errors were removed and a 
polishing assembly process was repeatedly performed to 
reduce errors, such as indels in the draft assembly using 
Quiver until none genomic variants were detected. The 
genome sequences were assembled into contigs using 
the PacBio RS II system. The orientation and direction 
of the assembled sequence was defined via Basic Local 
Alignment Search Tool (BLAST) and Mummer analyses 
[13]. BioEdit software was used to curate the polished 
sequence based on alignment results [14]. We used Rapid 
Annotation of Prokaryotic Genomes (PROKKA) to pre-
dict open reading frame (ORF) count and the rRNA and 
tRNA contents of B. cereus FORC_013. [15] The Rapid 
Annotation using Subsystem Technology (RAST) [16] 
was used for SEED annotation with the default settings. 
Cluster of Orthologous Groups (COG) annotation was 
conducted using WebMGA [17] and DNAPlotter [18] 
was employed to generate an annotation map.

Genome accession numbers
To study the comparative genomics of B. cereus strains, 29 
complete genome sequences were downloaded from the 
NCBI database (http://www.ncbi.nlm.nih.gov/genome/
genomes/157). The accession numbers for these 29 B. 
cereus sequences are CP009318.1 (03BB102), CP009641.1 
(03BB108), CP009941.1 (03BB87), CP009596.1 (3a), 
CP015727.1 (A1), CP001177.1 (AH187), CP001283.1 
(AH820), AE017194.1 (ATCC10987), AE016877.1 
(ATCC14579), CP009628.1 (ATCC4342), CP001176.1 
(B4264), CP001746.1 (CI), CP011153.1 (CMCCP0011), 
CP011151.1 (CMCCP0021), CP009300.1 (D17), 
CP009968.1 (E33L), CP003187.1 (F837/76), CP009369.1 
(FM1), CP009686.1 (FORC_005), CP012691.1 
(FORC_024), CP003747.1 (FRI-35), CP008712.1 (FT9), 
CP009590.1 (G9241), CP001186.1 (G9842), CP011155.1 
(HN001), AP007209.1 (NC7401), CP012483.1 (NJ-W), 
CP000227.1 (Q1), and CP009605.1 (S2-8).

Analysis of virulence factors
To investigate the virulence factor encoding genes of 
FORC_013 strain, we downloaded full DNA sequences 
from the virulence factor database (VFDB). For virulence 
gene identification, we used BLASTn method against 
VFDB (identity ≥0.95).

http://www.ncbi.nlm.nih.gov/genome/genomes/157
http://www.ncbi.nlm.nih.gov/genome/genomes/157
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Phylogenetic and comparative genome analysis
JSpecies software was employed to compute Average 
nucleotide identity (ANI) values of all 30 strains [19]. 
The MESTORTHO algorithm [20] was used to build an 
orthologous gene set for the 30 complete genomes (iden-
tity ≥ 0.95; coverage ≥ 0.8). Multiple sequence alignment 
of each orthologous gene was conducted using PRANK 
[21]. After removing the poorly aligned positions using 
Gblocks [22], orthologous sequences were joined into 
one sequence to build a phylogenetic tree. The neigh-
bor-joining method was used to construct a tree using 
MEGA7 [23]. The Codeml program based on PAML4 
(phylogenetic analysis by maximum likelihood) [24] was 
used to detect the genes which were under selective pres-
sure by estimating dN (rate of non-synonymous substitu-
tion) and dS (rate of synonymous substitution) based on 
the branch and branch-site models. Prior to pan-genome 
analysis, 30 complete genome sequences of B. cereus 
were annotated using the PROKKA annotation tool [15]. 
After annotation, GFF files output from PROKKA were 
used as the input files for creating the pan-genome with 
Roary software [25].

Quality assurance
The 16s rRNA gene was identified from the assembled 
sequence using PROKKA. Pairwise distances were cal-
culated by comparison of FORC_013 with published B. 
cereus genomes using ANI values.

Results and discussion
Genome features of Bacillus Cereus FORC_013
The B. cereus FORC_013 genome consists of a circular 
DNA chromosome and a single circular plasmid  (Addi-
tional file 1: Table S1). The whole genome sequence com-
prises 5,418,913  bp with a GC content of 35.3%. The B. 
cereus FORC_013 plasmid contains 259,749  bp with a 
GC content of 33% and a total of 259 predicted ORFs. 
The FORC_013 genome contains 5424 ORFs, 107 tRNA 
sequences and 42 rRNA sequences. Among the predicted 
ORFs, 3750 (69%) were predicted based on annotated 
genes and 1674 (31%) were hypothetical and unknown 
proteins (Fig. 1). Figure 2 presents the categorization of 
estimated functional genes based on SEED subsystem 
categories and COG functional categories; 3525 genes 
were classified into 26 SEED subsystem categories. Of 
these, 286 ORFs were categorized into the cell wall and 
capsule subsystem, which includes pathogenicity; 128 
ORFs were responsible for virulence, disease and defense, 
which may be related to toxin production. In total, 82 
ORFs were related to motility and chemotaxis due to the 
formation of biofilms, which affect the persistence of the 
pathogen. Functional annotation based on COG catego-
rization using WebMGA identified 3537 ORFs. Excluding 

ORFs that were related to the general function predic-
tion only and function unknown categories (26.4%), 1235 
ORFs, accounting for more than one-third of the COG-
assigned ORFs, were classified into five major COG cate-
gories: 309 ORFs in category E (amino acid transport and 
metabolism), 283 ORFs in category K (transcription), 219 
ORFs in category M (cell wall/membrane/envelope bio-
genesis), 217 ORFs in category G (carbohydrate transport 
and metabolism) and 207 ORFs in category J (translation, 
ribosomal structure and biogenesis). 

Virulence factors
The 20 virulence genes of FORC_013 were identified via 
BLASTn method against VFDB (Table 1). The virulence 
factors of FORC_013 were classified into six categories: 
host immune evasion, lipase, protease, regulation, toxin, 
and others. As previous studies reported, the diarrheal 
symptom is well known for having a close relationship 
with the enterotoxin, such as hemolytic enterotoxin HBL, 
non-hemolytic enterotoxin NHE and cytotoxin K [7, 11]. 
The genome of FORC_013 has all of these enterotox-
ins; CytK gene, HBL gene cluster (hblA, hblB, hblC, and 
hblD) and NHE gene cluster (nheA, nheB, and nheC), 
suggesting that these genes are responsible for patho-
genicity of FORC_013. In the protease category, immune 
inhibitor A metalloprotease (inhA) was detected; this 
gene assists in surviving the macrophage environment, 
which is an important factor of the host immune system 
[26]. Further, this supports that inhA in FORC_013 may 
contribute to retain living in the macrophage intracellu-
lar system. The FORC_013 strain has hemolysin II (hyl II) 
and hemolysin III (hyl III) that form the pores by adapt-
ing under the harsh environment [27, 28]. We also iden-
tified an regulation protein, pleiotropic regulator (PlcR), 
which is a well-known pleiotropic regulator of genes 
related to pathogenicity [29]. This gene plays a role in the 
biofilm formation, which may induce the sporulation of 
bacteria [30, 31]. Biofilm formation facilitates generat-
ing adhesive spores and contributes to high resistance 
[32]. Detection of PlcR indicated that the FORC_013 
may take advantage of both biofilm formation and viru-
lence gene regulation. Based on the results, it is reason-
able to assume that these virulence factors contribute to 
pathogenicity of FORC_013. Additionally, we conducted 
a lactate dehydrogenase (LDH) release assay to identify 
cytotoxicity, which indicated that FORC_013 has patho-
genic activity (Additional file 1: Fig S1).

Phylogenetic and comparative genome analysis
An ANI tree and a phylogenetic dendrogram based on 
orthologous genes were built for a comparative analysis 
of the FORC_013 strain. Both trees were generated using 
29 complete genome sequences acquired from the NCBI 
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database and the FORC_013 genome sequence (Fig.  3). 
The neighbor-joining method was used to construct 
an ANI tree with pairwise distance matrix and a phylo-
genetic tree with orthologous genes. The ATCC14579 
strain was shown to contain pathogenicity-related genes 
in a previous study [33]. In both of our tree analyses, 
FORC_013 clustered closely with ATCC14579. The high 
ANI value (98.6%) indicates that FORC_013 may have 
genes affecting virulence, similar to ATCC14579.

To identify the positively selected genes, we calcu-
lated the positive selection sites for the orthologous 
gene using the branch and branch-site models. In the 
branch model, 12 genes were revealed as being selected: 
YtxC-like family protein, post-transcriptional regula-
tor ComN, cytochrome c-550, HTH-type transcriptional 
regulator NorG, putative HTH-type transcriptional reg-
ulator, flagellar hook-basal body complex protein FliE, 
putative murein peptide carboxypeptidase, HTH-type 

Fig. 1 Circular genome map of the B. cereus FORC_013 chromosome. Circles, from outer to inner, represent the Cluster of Orthologous Groups 
(COG) distribution, with protein coding sequences (CDS) in the leading strand, CDS in the lagging strand, tRNA, rRNA, and the GC content. Func‑
tional genes are labeled around the outer circle as evolutionarily selected genes



Page 5 of 8Koo et al. Gut Pathog  (2017) 9:29 

transcriptional regulator GltC, AT synthase subunit a, 
regulatory protein YeiL, superoxide dismutase (Mn)2, 
and oligoendopeptidase F (Additional file 1: Table S2). In 
the branch-site model, two putative genes were detected 
with their own functions: mycinamicin III 3′′-O-methyl-
transferase and putative efflux system component YknX 
(Additional file  1: Table S3). In the methyltransferase 
gene, amino acid 190 was changed to asparagine from 
aspartic acid in FORC_013. Asparagine and aspartic acid 

are categorized in the carboxamide group and the nega-
tively charged group, respectively. In the gene identified 
as a putative efflux system component, amino acid 153 
in FORC_013 was changed to isoleucine from valine. Iso-
leucine is in the hydrophobic group, while valine is cat-
egorized as non-polar. Through evolutionary analysis, we 
detected some positively selected genes related to viru-
lence. The superoxide dismutase (Mn) 2 plays a crucial 
role in protecting cells from the oxidative stress [34, 35]. 

Fig. 2 Functional categorization of all estimated open reading frames (ORFs) in the B. cereus FORC_013 genome based on the a SEED and b COG 
databases

Table 1 Virulence factors of B. cereus FORC_013

Virulence factor Annotation Locus tag

Host immune evasion

 – Polysaccharide capsule FORC13_5198, FORC13_5217

Lipase

 plcA Phosphatidylcholine‑preferring phospholipase C (PC‑PLC) FORC13_4514

 piplc Phosphatidylinositol‑specific phospholipase C (PI‑PLC) FORC13_1400

Protease

 inhA Immune inhibitor A metalloprotease FORC13_4518

 – Immune inhibitor A metalloprotease FORC13_3892

Regulation

 plcR PlcR FORC13_5291

Toxin

 – Anthrolysin O FORC13_5042

 cytK Cytotoxin K FORC13_4071

 hlyII Hemolysin II FORC13_1637

 hlyIII Hemolysin III FORC13_3034

 – Hemolysin III homolog FORC13_5388

 hblC, hblD, hblB, hblA Hemolytic enterotoxin HBL FORC13_2078~FORC13_2081

 nheC, nheB, nheA Non‑hemolytic enterotoxin NHE FORC13_3362~FORC13_3364

Others

 – Internalin‑like FORC13_4633

 – FORC13_3846
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Toxin from FORC_013 can survive low gastric pH con-
dition in the presence of the superoxide dismutase (Mn) 
2. The YknX gene encodes an ABC transporter, which 
is contributed to the export of virulence factor [36, 37]. 
These results suggest that the positively selected genes 
identified in the FORC_013 strain may have an influence 
on pathogenicity.

Furthermore, Pan-genome analysis of 30 strains 
revealed 25,247 genes comprising the supra-genome 
based on the Roary pipeline (Additional file 1: Fig S2a). 
The relation between the number of genomes (x) and 
the pan-genome size (y) was y = 7520.62x0.37 − 2066.4 
(R2  =  0.999926). Also, the relationship between the 
core genome size and the genome number was calcu-
lated as n = 7276.95e−0.82m + 2284.85 (R2 = 0.960822). 
The size of the B. cereus pan-genome has grown, while 
the scale of core genome has decreased with the addi-
tion of new strains (Additional file  1: Fig S2b). Based 
on this result, we can consider this pan-genome to 
be an open pan-genome, providing evidence that this 
species dwells under conditions that encourage the 
transfer of genetic material through pathways such as 
horizontal gene transfer [38, 39]. Above all, we exam-
ined the unique genes of FORC_013 to elucidate the 

strain’s specific biological characteristics. We detected 
that the unique genes of the FORC_013 strain comprise 
224 genes, including 130 hypothetical proteins (Addi-
tional file 2: Table S1). The proportion of unique genes 
of FORC_013 was 4.16% (Additional file  1: Fig S2c). 
Furthermore, we could detect strain-specific genes of 
FORC_013 associated with virulence through Pan-
genome analysis. Here, we identified A-type flagellin 
and flagellin genes that are involved in biofilm forma-
tion [40], which are candidates for assisting the activa-
tion of FORC_013’s pathogenicity.

Conclusions
In this study, we sequenced the genome of B. cereus 
FORC_013, which is an opportunistic pathogen that 
occurs food-borne illness, and performed compara-
tive analysis with 29 published strains. As a result, we 
detected the virulence factors of this strain that can assist 
its pathogenicity. We also identified positively selected 
genes and unique genes of FORC_013. This study 
advances our understanding of the genetic characteris-
tics of FORC_013. In addition, these findings will provide 
useful information for further research related to the vir-
ulence mechanisms used by this pathogen.

Fig. 3 Average nucleotide identity (ANI) tree and phylogenetic tree based on a ANI value and b orthologous genes, respectively
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