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Abstract 

Background:  Campylobacter is considered to be the leading cause of human bacterial gastroenteritis, of which poul-
try is the main reservoir. Campylobacter contaminated chicken products are a major cause of human Campylobacter 
infection. In this study, the prevalence of Campylobacter in chicken in central China was investigated, and the geno-
typic diversity, antimicrobial resistance and biofilm of these isolates were characterized.

Results:  A total of 206 Campylobacter isolates, including 166 C. jejuni and 40 C. coli, were isolated from chicken farms 
and live poultry markets in central China. Multilocus sequence typing and phylogenetic analysis showed that the 
Campylobacter isolates had diverse genetic backgrounds, which covered most of the dominant clone complexes 
(CCs) reported throughout China. The most prevalent CCs were CC-464, CC-1150, CC-353, and CC-828. All the iso-
lates showed resistance to norfloxacin, ciprofloxacin and Cefazolin, and a prevalent resistance to fluoroquinolones, 
β-lactams and tetracyclines was also observed. Among all the isolates, 133 strains showed the ability to form biofilm, 
thereinto, the isolates in two genetic branches, mainly including CC-21, CC-48, CC-677 and CC-45, showed a signifi-
cantly lower ability to form biofilm than other genetic branches (p < 0.05). However, in general, the ability to form 
biofilm varied among different genetic branches, suggesting a complex genetic background to biofilm formation, but 
not only the genetic lineages. Compared with the strains unable to form biofilm, biofilm-producing strains possessed 
a significantly higher resistance to ampicillin, neomycin, sulfamethoxazole, amikacin, clindamycin and erythromycin 
(p < 0.05).

Conclusions:  To the best of our knowledge, this is the first report on the relationship of the genotypic diversity, 
antimicrobial resistance and biofilm-forming abilities of Campylobacter isolated from chicken in Central China, which 
showed the potential importance of biofilm in antimicrobial resistance. This study will help us better understand the 
epidemiology and antimicrobial resistance of Campylobacter.
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Background
Campylobacter is considered to be the leading cause of 
human bacterial gastroenteritis worldwide [1], account-
ing for an estimated 500 million infections per year glob-
ally [2]. In severe cases of C. jejuni infection, individuals 
may develop post infection complications associated with 
Guillain Barré Syndrome [3]. In North China, 36 cases of 
Guillain Barré Syndrome, resulted from C. jejuni infec-
tion, were reported in 2007 [4].

Campylobacter species, mainly including C. jejuni and 
C. coli, widely colonize in the intestinal tract of wild and 
domesticated animals and birds [5–7]. Chicken is one of 
the most popular animal-based food sources worldwide, 
which is also the reservoir of Campylobacter. Campylo-
bacter-contaminated chicken products are a major cause 
of human Campylobacter infection [8], which highlights 
its potential public health threat. Several epidemiologic 
studies on Campylobacter have been carried out in some 
parts of China. From 2008 to 2014, Wang et al. reported 
that the positive rates of C. jejuni and C. coli were 18.1 
and 19.0% respectively in five provinces of China [9]. 
Zhang et al. analyzed the genetic diversity of the C. jejuni 
isolates in Eastern China by multilocus sequence typing 
(MLST) and identified 94 sequence types (STs) belong-
ing to 18 clonal complexes (CCs) [10]. However, data on 
the prevalence and genetic diversity of Campylobacter is 
still limited in China, especially central China, which is 
an important transportation junction.

Moreover, Campylobacter isolates have raised great 
concerns due to a frequent emergence of resistance to 
fluoroquinolone, erythromycin, and other drugs [11, 12], 
which limits treatment alternatives. Therefore, analysis of 
antimicrobial resistance of Campylobacter in the poultry 
industry will contribute to managing cognate infections 
and mitigating the emergence of antimicrobial resistant 
strains. Recent years, the multidrug-resistant Campy-
lobacter have been frequently isolated, and a high anti-
microbial resistance rate of Campylobacter, especially 
to fluoroquinolone, has been reported in many areas 
[13–15]. Multi-drug resistance of Campylobacter is 
more severe in China where the resistance to fluoroqui-
nolones was reported to be as high as 98% in some areas 
[16, 17]. Although some of the mechanisms accounting 
for antimicrobial resistance in Campylobacter have been 
revealed [11, 18, 19], some possible factors may also 
attribute to the raise of antimicrobial resistance, such as 
the ability of biofilm formation.

Our previous study has shown that the Campylobac-
ter positive rate was 17.2%, with bacterial count varying 
from 3.6 to 360 most-probable-number (MPN)/g in the 
positive samples of chicken meats collected from markets 
in central China [20]. Studying the prevalence of Campy-
lobacter in live chicken and their surroundings will help 

us further control these pathogens. In this study, we 
investigated the prevalence, antimicrobial resistance and 
genetic diversity of Campylobacter strains isolated from 
chicken farms and markets in central China, which is one 
of the most important livestock and poultry circulation 
centers. We also tested the biofilm-forming ability of the 
Campylobacter isolates and analyzed the potential corre-
lation among biofilm formation, genotypes, and antimi-
crobial resistance.

Methods
Sampling and isolation of Campylobacter
From 2012 to 2016, a total of 817 samples, including 
317 anal swabs, 15 soils and 12 aerosols collected from 
chicken farms, and 448 anal swabs, 15 soils and 10 aero-
sols collected from live poultry markets, were collected 
in central China (3 farms and 4 markets in Hubei, 2 farms 
and 3 markets in Henan, 2 farms and 2 markets in Jiangxi 
and 1 farm and 2 markets in Anhui). In each sampling 
site, 35–45 anal swabs were collected. In parts of sam-
pling sites, 2 aerosol samples and 3 soil samples were col-
lected. Freshly collected anal swabs or soils were kept into 
Cary-Blair modified transport media (AMRESCO, USA). 
Aerosols (375 L/sample) were collected using BioSamper 
(SKC Ltd, USA). The samples were transported to the 
laboratory for Campylobacter isolation. The samples were 
resuspended in PBS which were used to inoculate Bolton 
broth containing Campylobacter growth and selective 
supplements (Oxoid, England) and incubated at 42 °C for 
24 h in air tight jars containing the AnaeroPack (Mitsubi-
shi, Japan) to generate a microaerobic condition. 100 µl of 
the culture was spread onto a modified charcoal cefoper-
azone deoxycholate agar (mCCDA, Oxoid) plate contain-
ing Campylobacter selective supplements and incubated 
for 48 h at 42 °C under microaerobic condition [21]. The 
suspected Campylobacter colonies were further purified 
and identified by PCR as described [22]. C. jejuni and C. 
coli were differentiated by hippuric acid hydrolysis test 
and PCR test [6]. The identified Campylobacter strains 
were stored at − 80 °C in MH broth containing 30% (v/v) 
glycerol.

Antibiotic resistance profiles
The antibiotic susceptibility of the isolates was deter-
mined by the disk diffusion method on Mueller-Hinton 
Agar (MHA, Oxoid) according to the Clinical and Labo-
ratory Standards Institute Standards guidelines [23]. A 
total of 11 antibiotics were tested, including ampicillin 
(Amp, 10  μg), Ceftriaxone (Cet, 30  μg), Cefazolin (Cez, 
30  μg), amikacin (Ami, 30  μg), Neomycin (Neo, 30  μg), 
tetracycline (Tet, 10 μg), sulfamethoxazole (Sul, 300 μg), 
clindamycin (Cli, 10 μg), erythromycin (Ery, 10 μg), cip-
rofloxacin (Cip, 5 μg) and norfloxacin (Nor, 10 μg). After 
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incubation for 24  h at 37  °C, the diameters (in mm) of 
the inhibition zones were measured. E. coli strain ATCC 
25922 and C. jejuni strain ATCC 33560 were used as the 
quality control.

Biofilm assays
Biofilm formation was assessed as described [24]. Briefly, 
overnight cultured cells were adjusted to an OD590nm of 
0.1 in Brucella medium (Oxoid) supplemented with 5% 
(v/v) chicken juice. To allow biofilm formation, 1  ml of 
the cell culture was added to a 24-well polystyrene tis-
sue culture plate (Corning) which was incubated at 37 °C 
under microaerobic condition for 48  h before stain-
ing. For crystal violet staining, cells were discarded and 
each well was washed with water, and the plate was then 
dried at 60 °C for 30 min. One milliliter of 1% crystal vio-
let solution was added to each well, and the plate was 
incubated on a rocker at room temperature for 30  min. 
Unbound crystal violet was washed off with water and 
the plate was dried at 37  °C. Bound crystal violet was 
dissolved in 20% (v/v) acetone-containing ethanol for 
10 min. The dissolved crystal violet was then poured into 
cuvettes and OD630nm was measured. All the tests were 
performed in triplicate. Three wells were subject to the 
same treatment but without bacteria inoculated, which 
were used as the negative control. The cutoff OD value 
(ODc) was defined as two times of the negative control 
value as previously reported [25, 26]. Based on the OD 
values, strains were classified into the following three 
categories: non-biofilm producer (OD ≤ ODc), weak bio-
film producer (ODc < OD ≤ 2 × ODc) and strong biofilm 
producer (2 × ODc < OD).

MLST typing
In order to determine the genetic diversity of the Campy-
lobacter isolates and their relationship, MLST analysis 

was carried out as previously described [27]. Briefly, 
genomic DNA was extracted using MiniBEST Universal 
Genomic DNA Extraction Kit (TaKaRa, Dalian, China) 
according to the manufacturer’s instructions. MLST 
analysis was conducted by sequencing seven Campylo-
bacter housekeeping genes (aspA, glnA, gltA, glyA, pgm, 
tkt, and uncA). The primers sets for these seven genes 
and their amplification conditions were used as previ-
ously described [27]. Amplification products were puri-
fied and sequenced. Allele numbers, sequence types 
(STs) and clonal complexes (CCs) were assigned using 
the Campylobacter MLST database (http://pubmlst.org/
Campylobacter/). Novel STs were submitted to MLST 
database and assigned new numbers. Consensus network 
of the calculated tree was constructed by SliptsTree 4 ver-
sion 1.2 using the multi-aligned core genome sequence of 
the different STs.

Statistical analysis
Chi square was used to determine the significance of 
resistance rates in different biofilm-forming groups and 
to compare the isolation rates of C. jejuni and C. coli. For 
analyzing the biofilm-forming abilities, the mean OD val-
ues (mean ± SEM) of isolates in each clade were calcu-
lated, and two-tailed t tests were used to determine the 
significance of the biofilm-forming abilities in different 
clades p < 0.05 was considered statistically significant.

Results
Prevalence of Campylobacter
As shown in Table 1, 206 Campylobacter strains (positive 
rate 25.2%) were isolated, including 156 C. jejuni and 38 
C. coli from anal swab samples, 5 C. jejuni and 2 C. coli 
from soil samples, and 5 C. jejuni from aerosol samples. 
The isolation rate of C. jejuni was higher than that of C. 
coli (20.3% vs 4.9%, p = 0.000). Among these isolates, 66 

Table 1  The prevalence of Campylobacter in chicken farms and poultry markets in central China

Sources Sampling site (no.) No. of positive samples/collected samples

Anal swabs Soils Aerosols Total

C. jejuni C. coli C. jejuni C. coli C. jejuni C. coli C. jejuni C. coli

Chicken farms Hubei (3) 23/112 8/112 1/9 0/9 4/8 0/8 66/344 19/344

Henan (2) 12/83 5/83 1/6 1/6 1/4 0/4

Anhui (2) 15/82 4/82 N/A N/A N/A N/A

Jiangxi (1) 9/40 1/40 N/A N/A N/A N/A

Poultry markets Hubei (4) 32/167 9/167 1/9 1/9 0/6 0/6 100/473 21/473

Henan (3) 31/117 4/117 2/6 0/6 0/4 0/4

Anhui (2) 19/86 4/86 N/A N/A N/A N/A

Jiangxi (2) 15/78 3/78 N/A N/A N/A N/A

Total 156/765 38/765 5/30 2/30 5/22 0/22 166/817 40/817

http://pubmlst.org/Campylobacter/
http://pubmlst.org/Campylobacter/
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C. jejuni (positive rate 19.2%) and 19 C. coli (positive rate 
5.5%) were isolated from the 344 samples collected from 
poultry farms, and 100 C. jejuni (positive rate 21.1%) and 
21 C. coli (positive rate 4.4%) were isolated from the 473 
samples collected from live poultry markets.

Genetic diversity of Campylobacter
MLST was performed to determine the genetic diversity 
and clonal origins of the Campylobacter isolates, and the 
details of MLST results have been listed in Additional 
file 1: Table S1. As shown in Fig. 1, 206 isolates contained 
a total of 72 different STs in our test. Among these iso-
lates, 146 out of the 206 isolates possessed 50 different 
STs which belonged to 15 CCs. The remaining 60 iso-
lates belonged to 22 different unassigned STs. 40 novel 
STs harboring 106 isolates were isolated for the first time. 
CC-464 was the most frequently isolated clonal com-
plex which contained 33 isolates belonging to ten STs, 
and accounted for 16.0% (33/206) of all the isolates. The 
major clonal complexes also included CC-1150 (n = 25, 
12.1%), CC-353 (n  =  22, 10.7%) and CC-828 (n  =  16, 
7.8%). The isolates collected from markets covered 61 STs 
belonging to 12 CCs and unassigned, while those isolated 
from chicken farms harbored 45 STs belonging to 12 CCs 
and unassigned.

All the STs were classified into five major clades (Fig. 1). 
Clade 1 covered most of the isolates, including the two 
major clonal complexes CC-464 and CC-353. All of the 
C. coli isolates belonging to CC-1150 and CC-828 were 
clustered in clade 2. The isolates recovered from chicken 
markets and farms shared nine out of the fifteen clonal 
complexes and all the clades contained isolates recov-
ered from chicken farms and markets, suggesting that the 
isolates collected from the two places might share same 
origins.

Antimicrobial resistance profiles of Campylobacter
As shown in Fig.  2a, all of the C. jejuni and C. coli iso-
lates showed resistance to norfloxacin, ciprofloxacin and 
Cefazolin. A high rate of resistance to tetracycline, cef-
triaxone and ampicillin has also been observed for the 
isolates, among which 89.69% of the C. jejuni and 90.24% 
of the C. coli were resistant to tetracycline; 82.42% of the 
C. jejuni and 97.56% of the C. coli were resistant to cef-
triaxone; and 76.36.5% of the C. jejuni and 82.93% of the 
C. coli were resistant to ampicillin. The isolates showed a 
relative low rate of resistance to amikacin (4.85% of the 
C. jejuni and 21.95% of the C. coli), neomycin (10.91% of 
the C. jejuni and 14.63% of the C. coli), and erythromycin 
(12.12% of the C. jejuni and 26.83% of the C. coli). Except 
for sulfamethoxazole and the three drugs which all the 
isolates were resistant to, the resistance rates of C. jejuni 
were lower than that of C. coli in this study.

As shown in Fig.  2b, all the isolates were resistant to 
at least three tested antimicrobial agents, among which 
95.1% of the isolates were resistant to more than five anti-
biotics. There were four C. jejuni and two C. coli strains 
that were resistant to all the eleven antimicrobial agents 
tested. However, one C. jejuni strain showed sensitiv-
ity to most of the antibiotics, which was only resistant 
to three of antimicrobial agents tested. In general, most 
of the isolates were resistant to 5–7 antimicrobial agents 
tested. The most frequent multidrug resistance pattern 
was resistance to ciprofloxacin, norfloxacin, tetracycline, 
ampicillin, ceftriaxone and cefazolin, which covered 54 
isolates (Additional file 1: Table S1).

Biofilm formation of Campylobacter isolates
The cutoff OD value (ODc) to define a biofilm pro-
ducer was determined as OD630nm = 0.279 as previously 
described [26]. The OD630nm values generated by crystal 
violet staining of each isolate were listed in Additional 
file 1: Table S1. Based on the biofilm-forming ability, 206 
Campylobacter isolates were classified to three groups 
(Table 2, Fig. 3). Seventy-three isolates (35.4%) were iden-
tified as non-biofilm producers (OD630  ≤  0.279), while 
133 isolates (64.6%) were biofilm producers. Among 
these biofilm producers, 113 isolates were weak biofilm 
producers (0.279 < OD630 ≤ 0.558) and 20 isolates were 
strong biofilm producers (OD630 > 0.558). All the soil iso-
lates and aerosol isolates were biofilm producers.

Correlation between biofilm formation and antimicrobial 
resistance
As shown in Table  2, both biofilm producers and non-
biofilm producers showed a high rate of resistance to 
ceftriaxone, cefazolin, tetracycline and two fluoroqui-
nolones drugs including ciprofloxacin and norfloxacin. 
However, compared with non-biofilm producers, biofilm 
producers possessed a higher rate of resistance to ampi-
cillin (88.0% vs 58.9%, p =  0.000), neomycin (18.0% vs 
2.7%, p =  0.002) and sulfamethoxazole (48.9% vs 8.2%, 
p =  0.000). Moreover, all of the non-biofilm producers 
were sensitive to amikacin, clindamycin and erythro-
mycin. In contrast, strong biofilm producers showed 
a resistance rate of more than 90% to clindamycin and 
erythromycin. Six isolates, which were resistant to all 
the types of antibiotics tested, were biofilm producers. 
Among them, four out of the six isolates were strong 
biofilm producers (Additional file  1: Table S1). These 
results suggested that the ability of biofilm formation 
had a positive correlation with antimicrobial resistance 
of the Campylobacter isolates. However, there was an 
exception that compared with the non-biofilm produc-
ers, the biofilm producers showed a lower rate of resist-
ance to tetracycline.
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Fig. 1  The genetic relationships of all STs in this study. All the STs were clustered to five major clades. The CCs and the numbers of strains isolated 
from chicken farms and poultry markets respectively in each ST were also listed. The numbers of strains isolated from soils (marked with “S”) or 
aerosols (marked with “A”) were listed in bracket
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Correlation between biofilm formation and genotypes
As shown in Figs.  1 and 3, 206 Campylobacter isolates 
fell into five clades, of which clade 1 and 2 had more 
members than the other clades. The mean OD values 
in each clade were as follows: clade 1  =  0.37  ±  0.01, 
clade 2  =  0.37  ±  0.02, clade 3  =  0.25  ±  0.04, clade 
4 = 0.26 ± 0.03 and clade 5 = 0.31 ± 0.03. Although all 
of the strong biofilm producers were present in clade 1 
and clade 2, strains in these two clades exhibited different 
levels of abilities to form biofilm, which suggested that 
the ability of biofilm formation varied among the domi-
nant genotypes of Campylobacter. 75% of the strains 
(20/25) in clade 3 and clade 4 were non-biofilm produc-
ers and the ability of biofilm-formation of the strains in 
these two clades was significantly lower than that of the 

other clades (clade 3 vs clade 1, p  =  0.007; clade 3 vs 
clade 2, p = 0.013; clade 4 vs clade 1, p = 0.012; clade 4 
vs clade 2, p = 0.020). Strains which belonged to CC-21, 
CC-48, CC-677, CC-45 and a few unassigned isolates 
were included in these two clades.

Discussion
Poultry are recognized as a main reservoir of Campy-
lobacter. Consumption of poultry is considered to be 
an important cause of human infection with Campy-
lobacter, and leads to extensive spread antimicrobial 
resistance [28]. In this study, Campylobacter strains 
were isolated from 25.2% of the samples collected from 
chicken farms and markets, including 166 C. jejuni and 
40 C. coli. According to several previous reports, the 

Fig. 2  Antimicrobial resistance of Campylobacter isolates. a Resistance rates of C. jejuni and C. coli isolates to 11 agents; b multidrug resistance of C. 
jejuni and C. coli isolates to 11 agents

Table 2  Antimicrobial resistance of Campylobacter isolates with different biofilm-forming abilities

Classes Members Biofilm strong isolates (n = 20) Biofilm weak isolates (n = 113) Biofilm negative isolates (n = 73)

No. of resistant 
isolates

Resistance rates 
(%)

No. of resistant 
isolates

Resistance 
rates (%)

No. of resistant 
isolates

Resistance rates 
(%)

β-lactams Ampicillin 19 100 98 85.8 43 58.9

Ceftriaxone 19 95.0 97 85.8 60 82.2

Cefazolin 20 100 113 100.0 73 100.0

Aminoglycosides Neomycin 11 55.0 13 11.5 2 2.7

Amikacin 8 40.0 9 8.0 0 0

Tetracyclines Tetracycline 16 80.0 99 84.1 70 95.9

Sulfonamides Sulfamethoxa-
zole

19 95.0 46 40.7 6 8.2

Fluoroquinones Ciprofloxacin 20 100 113 100.0 73 100.0

Norfloxacin 20 100 113 100.0 73 100.0

Lincosamides Clindamycin 19 95.0 26 23.0 0 0

Macrolides Erythromycin 18 90.0 13 11.5 0 0
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positive detection rate of Campylobacter in poultry farms 
varies largely between different regions, ranging from 2 
to 100%, and the prevalence of Campylobacter is lower in 
Scandinavian countries than in other European countries, 
North America, and developing countries [29]. China is 
the biggest developing country in which a diverse preva-
lence rate has also been reported in different parts of the 
country. For example, Huang et al. revealed that C. jejuni 
was frequently detected in poultry, with an average isola-
tion rate of up to 18.61% [30]. Wang et  al. showed that 
the positive rates of C. jejuni and C. coli were 18.1 and 
19.0% respectively in chicken in five provinces of China 
[9]. In Tianjin, the contamination rates of C. jejuni and 
other Campylobacter species were 13.7 and 5.7% respec-
tively [31]. In this study, our data showed that the positive 
rate of C. jejuni was a bit higher than most of the other 
studies carried out in China. We also found that Campy-
lobacter existed in the soils and aerosols of chicken farms 
and markets, suggesting that the pathogens were widely 
spreading between host and surroundings. This situa-
tion makes it harder for us to control Campylobacter 
infection. A prevalence and risk assessment of C. jejuni 
in chicken in China suggested that key efforts should be 
made, especially in chick breeding and chicken prepara-
tion processes [32].

In our study, MLST analysis showed a total of 72 dif-
ferent STs belonging to 15 CCs and some unassigned 
clonal complexes. The major clonal complexes included 
CC-464, CC-1150, CC-353, and CC-828, which were 
similar to our previous investigation on chicken meat 

in the same region [21]. Most of these CCs (CC-464, 
CC-1150, CC-353 and CC-828) were also frequently 
identified in diarrhea patients worldwide [33, 34]. In 
North China, the most frequently isolated clonal com-
plexes were CC-21, CC-353, CC-354 and CC-443 [31, 
35], while the dominant clonal complexes of C. coli were 
CC-828 and CC-1150 [36]. In East China, the most com-
mon ST type of the Campylobacter strains isolated from 
human and food was ST-353, while the dominant ST type 
from chicken and food was ST-354 [10]. In Guangdong, 
a province in southern China, the dominant clonal com-
plex was CC-828 [37]. It seems that the dominant clonal 
complexes of Campylobacter were discrepant in differ-
ent regions. However, most of the CCs reported in these 
regions had been isolated in our study, which may be 
because central China, where all the samples were col-
lected, is one of the most important livestock and poultry 
circulation centers in our country.

A total of 40 novel STs were identified in this study. 
Genetic relationship analysis showed that different 
sources of isolates have a crossed distribution in each 
clonal group and most of the novel STs only have a minor 
variation with a close phylogenetic relationship to known 
CCs. Selection forces, such as differences in temperature, 
structure and biochemical and immunological habitats, 
may accelerate the evolution to gain the ability to persist 
in different enteric environments and survive in different 
environments during transmission. Clade 1 and 2 con-
tained lots of small genetic branches, which may be due 
to the adaptive evolution of isolates in these two clades 
occurred more frequently in our investigated regions.

Another more important selection pressure might 
be the usage of antibiotics, which could cause heritable 
genetic mutations and horizontal resistance gene trans-
fer, leading to serious antimicrobial resistance in Campy-
lobacter [11, 38]. More seriously, some of the antibiotics 
to which the Campylobacter isolates were resistant were 
used as therapeutic drugs in severe cases of infection 
[39]. Although resistance rates varied in different regions, 
in general high resistance rates, especially to fluoroqui-
nolones, were found in most of the studies in China. For 
example, in Zhang et  al.’s study, the resistance rate of 
Campylobacter to ciprofloxacin was 100%, and 94% to 
tetracycline, 61% to erythromycin, and 50% to ampicil-
lin [36]. Chen et al. reported that more than 98% of the 
tested Campylobacter isolates were resistant to quinolo-
nes and tetracycline [40]. Even as early as in 2002, the 
prevalence of quinolone resistance of the isolates had 
been up to 85.9% in Hong Kong [41]. Low resistance 
rates of Campylobacter were only reported in North-
west China [42]. In our study, a very high resistance 
rate to β-lactams, tetracyclines and fluoroquinones was 
observed (Fig. 2), and a high resistance rate to the other 

Fig. 3  Biofilm-forming abilities of Campylobacter isolates belonging 
to different clonal complexes. The bottom broken lines indicate the 
cutoff value (ODc = 0.279) and twofold cutoff value (ODc = 0.558). 
Based on the OD values, the strains were classified in three cat-
egories: non-biofilm producer (OD ≤ ODc), weak biofilm producer 
(ODc < OD ≤ 2 × ODc) and strong biofilm producer (2 × ODc < OD)
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drugs, such as erythromycin, was also found in the strong 
biofilm producers (Table 2). Our previous study showed 
that all of the fluoroquinolone-resistant strains contained 
a Thr-86-Ile substitution in GyrA, and that the CmeR-
Box variations increased the expression of CmeABC 
efflux pump which led to the high resistance [43]. Over-
expression of drug efflux pump may not only contribute 
to fluoroquinolones resistance, but also increase resist-
ance to other drugs [44–46]. Bacteria exposing in efflux 
inhibitors or mutants in efflux pumps showed decreased 
biofilm, which suggested that efflux pumps also contrib-
uted to their biofilm formation [47, 48]. Although more 
resistance mechanisms need to be revealed, efflux pumps 
seem to play important roles in antimicrobial resistance 
as well as biofilm formation.

Biofilms are sessile communities of bacterial cells 
enclosed in a self-produced extracellular polysaccha-
ride matrix, which plays an important role in evad-
ing host immune clearance and resisting antimicrobial 
agents, leading to persistent and chronic infections [26]. 
Campylobacter may form a monospecies biofilm, which 
protects them from environmental stress, including anti-
biotic treatment [24]. In our tested strains, 64.6% were 
identified to be biofilm producers. Comparing with the 
non-biofilm producers, the biofilm producers possessed 
a higher resistance rate to ampicillin, neomycin, sul-
famethoxazole, amikacin, clindamycin and erythromycin. 
Although studies on the correlation between biofilm and 
antimicrobial resistance were limited in Campylobacter, 
positive impact of biofilm on reducing the permeation 
of ampicillin has been reported in other bacteria [49]. 
Some regulators, such as LuxS, have also been reported 
to be linked to biofilm formation and antimicrobial 
resistance in some bacteria [50]. We found an excep-
tion that the resistance rate to tetracycline was higher in 
non-biofilm producing isolates than in biofilm produc-
ing strains, it may be due to the high distribution of the 
resistance genes in non-biofilm producing isolates, such 
as tet [51]. It is interesting that all of the soil isolates and 
aerosol isolates were biofilm producers, which suggested 
that biofilm might be an important factor to help strain 
to survive in the surroundings as well as in the host. Our 
study on the biofilm-forming characteristics of Campylo-
bacter isolates would help us understand the increasing 
resistance to antibiotics of Campylobacter as well as their 
pathogenicity to host.

In clade 3 and clade 4, 75% of the strains (20/25) were 
non-biofilm producers and the biofilm-forming abilities 
in these two clades were significantly lower than other 
clades (p < 0.05). The closely related strains may have a 
common ancestor, and STs developing from one biofilm-
forming ST origin may share better biofilm-forming 
ability. The correlation of the origin and phylogenetic 

relationship between their C. jejuni isolates and biofilm-
forming abilities has also been reported [52]. Previous 
studies also showed that some gene variants were asso-
ciated with different C. jejuni multilocus sequence types, 
such as fspA [53] and capA [54]. The association between 
biofilm related genes and multilocus sequence types 
needs to be further studied. However, isolates within the 
same clade also exhibited varied abilities to form biofilm 
in our study. Ben et al. analyzed the genome sequences of 
strains with different biofilm-forming abilities, and found 
that three genes were associated with the increased bio-
film formation in CC-21 and 43 genes in CC-45, but 
there was no overlap between these two CCs [55]. These 
results suggested a complex genetic correlation between 
genetic background and biofilm formation.

Conclusions
In the present study, a high prevalence and genotypic 
diversity were observed in the Campylobacter strains 
isolated in chicken in central China. We analyzed the 
correlation among biofilm-forming abilities, MLST 
genotype and antimicrobial resistance, which revealed 
a positive correlation between resistance rate and the 
ability of biofilm-forming. This study will help us bet-
ter understand the epidemiology and resistance of 
Campylobacter.
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