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Abstract 

Background: Horizontal Gene Transfer (HGT) is the process of transferring genetic materials between species. 
Through sharing genetic materials, microorganisms in the human microbiota form a network. The network can 
provide insights into understanding the microbiota. Here, we constructed the HGT networks from the gut microbiota 
sequencing data and performed network analysis to characterize the HGT networks of gut microbiota.

Results: We constructed the HGT network and perform the network analysis to two typical gut microbiota datasets, 
a 283-sample dataset of Mother-to-Child and a 148-sample dataset of longitudinal inflammatory bowel disease (IBD) 
metagenome. The results indicated that (1) the HGT networks are scale-free. (2) The networks expand their complexi-
ties, sizes, and edge numbers, accompanying the early stage of lives; and microbiota established in children shared 
high similarity as their mother (p-value = 0.0138), supporting the transmission of microbiota from mother to child. 
(3) Groups harbor group-specific network edges, and network communities, which can potentially serve as biomark-
ers. For instances, IBD patient group harbors highly abundant communities of Proteobacteria (p-value = 0.0194) and 
Actinobacteria (p-value = 0.0316); children host highly abundant communities of Proteobacteria (p-value = 2.8785e−5 ) 
and Actinobacteria (p-value = 0.0015), and the mothers host highly abundant communities of Firmicutes 
(p-value = 8.0091e−7 ). IBD patient networks contain more HGT edges in pathogenic genus, including Mycobacterium, 
Sutterella, and Pseudomonas. Children’s networks contain more edges from Bifidobacterium and Escherichia.

Conclusion: Hence, we proposed the HGT network constructions from the gut microbiota sequencing data. The 
HGT networks capture the host state and the response of microbiota to the environmental and host changes, and 
they are essential to understand the human microbiota.
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Introduction
Human gut microbiota is a complex ecosystem consist-
ing of a total of 1014 bacteria [1]. Species richness makes 
gut microbiota harbor diverse metabolic functions and 
robust to disturbances, such as the invasion of pathogenic 
bacteria while maintaining host health. However, factors 
[2], such as age [3], environment [4], diet [5], can lead 
to significant shifts in the composition of the individual 

microbiome over longitudinal periods. Microbes may 
share genetic materials with others to get beneficial traits 
through Horizontal Gene Transfer (HGT) to gain better 
adaptions. HGTs allow microbes to acquire genes from 
distant species that are not in a parent–offspring rela-
tionship [6]. It increases the genetic diversity of recipi-
ents and plays a vital role in the evolution of microbes. 
The complex interaction among species indicates that gut 
microbiota is a complex system.

Researchers have developed tools to detect HGTs. 
GIST [7] identified HGT events by searching for regions 
with different genomic signatures from the genome 
average, and it can detect HGT among distantly related 
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genomes. While for some ancient HGT events, genomic 
signatures are similar to background subjected to the 
mutation process [8] and are hard to be recognized by 
GIST. Darkhorse [9] and HGTector [10] identified HGT 
events in genomes showing taxonomically discordant 
similarity to genes within a reference database. Com-
pared to GIST, Darkhorse and HGTector are biased 
toward more ancient HGT events and not make use of 
phylogenetic trees to test for phylogenetic incongru-
ence. MetaCHIP [11] identified HGT events based on 
best-match and phylogenetic incongruency approaches 
[12]. The main challenge of MetaCHIP is to detect recent 
HGT events [13]. Essentially, HGT is the insertion of for-
eign genes into recipient genomes. It is similar to inter-
chromosomal translocation in an organism with multiple 
chromosomes [14]. Therefore, HGT can be treated as a 
kind of complicated structure variation (SV). No mat-
ter ancient or recent HGT events could be identified by 
mapping NGS reads against reference genomes. LEMON 
[15] applies split reads re-alignment [16] and DBSCAN 
[17] to detect HGT events.

Network science is a powerful tool to analyze and 
understand such complex systems. Various mathematical 
models are available to analyze and quantify such systems 
[18–22]. In order to use networks to model the human 
gut microbiota, one method calculates the correlation 
coefficients for the abundances of each pair microbes. 
The correlation matrix forms a network [23]. The positive 
and negative correlation indicates the two microbes may 
have cooperation or competition interact, respectively. 
However, this network model is incapable of capturing 
the potential mechanism for the interactions. Another 
method is based on the metabolic exchange between 
microbes to construct the Global metabolic interaction 
network of the human gut microbiota [24]. It requires 
annotations of enzymes and metabolic pathways. The 
HGT networks represent how human gut, oral, naso-
pharyngeal skin microbiomes share genetic material to 
adapt to the environment. They provide new insights into 
the dynamics of the microbiota. Through analyzing the 
HGT networks, we may gain new insights into the com-
munities assemble, species interactions, and host-asso-
ciated selection pressure on the microbiota. Kunin et al. 
[25] constructed the HGT network based on the recon-
structed phylogenetic trees. It utilized protein sequences 
as evolutionary units, limiting its ability to detect HGT 
events in regions outside or across gene boundaries [26]. 
While these HGT events could be detected by LEMON, 
which takes whole metagenomic sequencing data as 
input, thus, LEMON could be used to create a complete 
HGT network.

We apply the HGT networks to study two typical 
human gut microbiota datasets.

The first is a 283-sample dataset of Mother-to-Child 
[3]. The development of infant gut microbiota plays an 
important role in establishing a healthy host–microbi-
ome symbiosis, including the maturation of the immune 
system [27], nutrient utilization [28], and so on. The 
dynamic microbiota grows rapidly and is affected by 
factors such as delivery mode [29] and feeding [30]. As 
the importance of infant gut microbiota has been real-
ized, how and where an infant acquires these microbes 
attract increasing attention. The maternal gut bacteria 
is considered as one important source, but the vertical 
inheritance remains largely unexplored. Ferretti et al. [31] 
utilized strain-level metagenomic profiling to track the 
mother-to-infant bacterial transmission; they find strains 
shared within the mother and infant pairs. However, 
their research is unable to capture the significant similar-
ity of the gut microbiome in mother–child pairs by using 
Bray–Curtis dissimilarity.

The second is a 148-sample dataset of longitudinal 
Inflammatory bowel disease (IBD) metagenome [32]. 
The composition of gut microbiota is related to many 
diseases [33], such as IBD [34] and type 1 diabetes [35]. 
IBD is one most common groups of chronic inflamma-
tory disorders affecting millions of people. The cause of 
IBD is associated with human genetic mutation and gut 
microbiota. The gut microbiota plays an important role 
in IBD [36]. The increasing of Bacteroidetes and decreas-
ing of Firmicutes are observed in IBD patients [37]. Since 
gut microbiota is dynamic, the longitudinal gut microbi-
ota is analyzed to capture the variation of gut microbiota 
composition over time in IBD patients [38]. The linkage 
between metagenomic functional potential and func-
tional activity is built in recent research [32]. However, 
these work fail to model gut microbiota from a system-
atic perspective, which motivates us to apply HGT net-
work analysis.

Our results consist of three aspects. First, we investi-
gate the general characteristics of the HGT network. 
HGT network is a complex network, and we used power-
law distribution and three heavy tail distributions to fit 
the network. The result demonstrates that the HGT net-
works are scale-free, which implies the HGT network 
holds important properties such as ultra-small world 
property and robust to random disruption. Second, we 
studied the dynamic change of HGT networks, espe-
cially for the Mother-to-Child data set. The increas-
ing complexity (Von Newman Entropy), network size, 
and HGT event rate in child HGT networks accom-
pany the growth of child gut microbiota during the first 
three months after birth. Furthermore, the high struc-
tural similarity (p-value  =  0.0138) between the child 
and maternal HGT networks supports the transmission 
of microbiota from mother to child. Third, we analyze 
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phenotype-specific HGT communities and HGT edges. 
As for HGT communities, compared with control indi-
viduals, the phylum composition of IBD-specific HGT 
communities have significant increasing of Proteobac-
teria (p-value =  0.0194) and Actinobacteria (p-value = 
0.0316). Compared with mother, the phylum composi-
tion of child-specific HGT communities have significant 
decreasing of Firmicutes (p-value = 8.0091e−7 ) [39] and 
increasing of Proteobacteria (p-value =  2.8785e−5 ) and 
Actinobacteria (p-value =  0.0015) [40, 41]. As for con-
served HGT edges across multiple samples, IBD patients 
have increased HGT edges in pathogenic genus including 
Mycobacterium, Sutterella, and Pseudomonas, compared 
to non-IBD individuals. Child-specific HGT edges are 
mainly from Bifidobacterium and Escherichia. These dif-
ferences imply the alteration of gut microbiota caused by 
the change of selection pressure.

As we can see, both in Mother-to-Child and longitudi-
nal IBD data sets, by analyzing temporal HGT networks, 
we captured the significant changes of HGT networks. 
These changes reflect the alteration of gut microbiota 
under the change of host-associated selection pres-
sure. Therefore, the HGT network is an effective model 
to describe the relationship between the gut microbi-
ota and the host state. It provides a new perspective to 
observe the change of gut microbiota in the everchanging 
environment.

Results
We applied HGT networks analysis to two human gut 
longitudinal metagenomic sequencing datasets: Mother-
to-Child data set [3] and longitudinal IBD data set [32]. 
As described in [3], the Mother-to-Child data set con-
tains 283 samples that are collected from 44 Finish 
families. Thirty-three families have children sampled 
at five-time points: birth, two weeks, and one, two, and 
three months and mother sampled at three-time points: 
gestational week 27, birth, and three months post-deliv-
ery. The remaining 11 families have children sampled 
at birth and mother sampled at gestational week 27 and 
birth. As described in [32], the longitudinal IBD data 
set contains 148 samples spanning 26 participants: 15 
patients with Crohn’s disease (CD), eight patients with 
ulcerative colitis (UC) and three non-IBD controls, here 
CD and UC are two main forms of IBD.

Following the method in, we constructed one HGT 
network per sample. Then we obtained 283 HGT net-
works from the Mother-to-Child data set and 148 HGT 
networks from the longitudinal IBD data set. Figure  1a 
illustrates the distribution of the size of HGT networks 
constructed from the two datasets. Network size is the 
number of nodes in the HGT network. The averagechild 
form individual network size of infant HGT networks 

is 702.57, and the average network size of maternal 
HGT networks is 2228.12. There is an overlap between 
the distribution of network size for the HGT networks 
detected from CD, UC, and non-IBD controls individu-
als. Their average network sizes are 1604.71, 1795.03, and 
1611.66, respectively. Figure 1b, c are Venn diagrams of 
HGT events identified in Mother-to-Child and IBD data 
sets, respectively. Common HGT events shared by dif-
ferent groups are much less than group-specific HGT 
events. In the Mother-to-Child data set, the number of 
shared HGT events is 40,860, while the number of Child-
specific and Mother-specific HGT events are 466,309 and 
744,127, respectively. In Longitudinal IBD, the number of 
HGT events shared by UC, CD, and non-IBD controls is 
7705, while the numbers of UC-specific, CD-specific, and 
non-IBD-specific HGT events are 149,294, 363,400, and 
135,686, respectively. So, HGT event overlap could effec-
tively measure the overlap between HGT networks under 
different conditions.

HGT networks are scale free
Our study implies that the HGT network is scale-free. 
It is supported by the result that the degree distribution 
of the HGT network is better fitted by power-law than 
the other three heavy tail distribution [42]. We filtered 
out HGT networks with less than 100 nodes to ensure 
the remaining HGT networks have enough degree data 
to fit. Finally, we collected 256 HGT networks from the 
Mother-to-Child data set and 147 HGT networks from 
the longitudinal IBD data set. We applied powerlaw 
package [43] to estimate degree distribution of HGT 
networks.

The evaluation of the goodness of fit for power-law dis-
tribution is described in “Method” section. As illustrated 
in Fig. 2a, 100%, 94%, and 92% of HGT networks are bet-
ter fitted by power-law than exponential, lognormal_pos-
itive, and Weibull respectively in Mother-to-Child data 
set. Meanwhile, Fig.  2b demonstrates that in Longitu-
dinal IBD data set 99%, 94%, and 88% of HGT networks 
are better fitted by power-law than exponential, lognor-
mal_positive, and Weibull. Therefore, the HGT network 
is scale-free since HGT networks have degree distribu-
tion better fitted by power-law than the other three heavy 
tail distributions. Besides, as we can see in Fig. 5, a vast 
number of nodes of the HGT network has a small degree. 
They are connected to a few hub nodes. These hub nodes 
would have a very large degree. Thus, the degree of a ran-
domly selected node would be tiny or arbitrarily large, 
which means HGT networks do not have a meaningful 
internal scale [44]. It explains the scale-free property of 
the HGT network.

HGT networks in different groups harbor differ-
ent distributions of fitted exponents alpha which is the 



Page 4 of 20Li et al. Gut Pathog           (2020) 12:33 

parameter of power-law distribution. Figure  3a com-
pares exponents alpha fitted to maternal and child HGT 
networks respectively. The distribution of fitted expo-
nents corresponding to Mother is significantly different 
to the one corresponding to child (p =  0.038, Student’s 
t-test) and has larger mean value µmother > µchild . Fig-
ure  3b compares exponents alpha fitted to HGT net-
works of non-IBD, UC, and CD respectively. Three 
exponent distributions are significantly different 
to each other (p  =  0.009, Student’s t-test) and have 
µ(UC) > µ(CD) > µ(Non-IBD).

As shown in Fig. 3, the 95% Confidence Intervals CI95% 
of fitted exponent alpha in all groups are in region (2, 3). 

So HGT networks hold the ultra-small world property, 
which implies that HGT networks tend to form dense 
sub-graphs. Such a network structure implies that the 
HGT network is robust and could maintain a stable sta-
tus [45].

Ultra‑small world property of HGT networks
Since the degree exponent α of the HGT network sat-
isfies 2 < α < 3 , HGT networks have the property of 
the ultra-small world [46]. The ultra-small world prop-
erty means that the diameter d of HGT networks has 
a linear relationship with lnlnN, where N is the num-
ber of nodes in the network, ln is the natural logarithm. 

466309 74412740860

Child

Mother

149294

135686

36340018450

3708 12179

7705

UC CD

non

a

b c
Fig. 1 a Distribution of HGT network size in Mother-to-Child data set and longitudinal IBD data set; b and c Venn diagrams of HGT events 
identified in Mother-to-Child and IBD data sets respectively. b The number of shared HGT events is 40,860, while the number of Child-specific and 
Mother-specific HGT events are 466,309 and 744,127 respectively. c The number of HGT events shared by UC, CD, and non-IBD controls is 7,705, 
while the number of UC-specific, CD-specific, and non-IBD-specific HGT events are 149,294, 363,400, and 135,686 respectively
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Figure  4 shows the linear relationship between d and 
lnlnN of HGT networks in Mother-to-Child and Lon-
gitudinal IBD data sets. The ultra-small diameter d 

increases as lnlnN, which is significantly slower growth 
than the lnN derived for random networks. Therefore, 
the average distance in an HGT network is smaller than 
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Fig. 2 a Loglikelihood ratio test for powerlaw vs exponential and powerlaw vs lognormal_positive fitting to HGT networks of Mother-to-Child data 
set; b Loglikelihood ratio test for powerlaw vs exponential and powerlaw vs lognormal_positive fitting to HGT networks of Longitudinal IBD data 
set. In each test, if the ratio is larger than 0, the power law achieves better fit than the other
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that in a random network, which imply the ultra-small 
world property of HGT networks.

Analysis of Mother‑to‑Child HGT networks
HGT network evolves
We studied the evolvement of HGT networks across 
time from two aspects: network complexity and network 
similarity. Network complexity is measured by Von New-
man entropy, network size, and HGT event rate. Net-
work similarity is measured by the Jaccard index and 
degree correlation. We observed, first, child HGT net-
works have increasing network complexity in the first 
three months after birth. Second, maternal and child 
HGT networks share a family-specific significant simi-
larity. Last, the individual-specific similarity of the HGT 

network between different time points in IBD patients 
is significantly larger than that in non-IBD individuals. 
The evolvement of the infant HGT network describes 
the growth of gut microbiota. Figure  5 shows the tem-
poral evolvement of child HGT networks across five-
time points and the maternal HGT network at birth. As 
time goes by, the child HGT network becomes bigger 
and more complex due to the growth of child intestinal 
microbial strains harboring HGT events. Compared to 
child HGT networks, the maternal HGT network con-
tains more nodes and edges, so it has a more complex 
internal structure.

We analyzed the evolvement of maternal HGT net-
works at three-time points: gestational week 27 (M_
Gest), birth (M_Birth), and three months post-delivery 
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Fig. 3 a Comparison of exponents alpha fitted to maternal and child HGT networks respectively; b Comparison of exponents alpha fitted to HGT 
networks of non-IBD, UC, and CD respectively
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Fig. 4 The two scatter plots shows the linear relationship between d and lnlnN of HGT networks in Mother-to-Child and Longitudinal IBD data sets. 
This demonstrates the ultra-small world property of HGT networks
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(M_3_months), and child HGT networks during the first 
three months. The evolvement is measured from three 
aspects: Von Newman entropy, network size, and HGT 
event rate. The Von Newman Entropy measures the 
complexity of the network (see “Method” section) Net-
work size is the number of nodes in the HGT network. 
HGT event rate is defined in “Method” section . It meas-
ures the number of HGT events detected in one sample. 
We calculate the three metrics for all HGT networks at 
each time point. As shown in Fig. 6, for child HGT net-
works, the three metric keep increasing during the first 
three months, which imply the increasing of the num-
ber of HGT events and the growing number of strains 
involved in HGT events. Compared to the evolvement of 
child HGT networks, the three metrics of maternal HGT 
networks do not have increasing trends and maintain a 
relatively high level at the three-time points. This reflects 
the stability of mature gut microbiota. Furthermore, the 
increasing trends of the Von Newman Entropy, Network 
size, and HGT event rate of child HGT networks indi-
cate the rapid growth of child gut microbiota during the 
first three months after birth. The average Von Newman 

Entropy of child HGT networks rise from 0.994 to 0.9983. 
The average network size rises from 236.92 to 972.9, and 
the average HGT event rate rises from 14.8 to 17.39. This 
growth process could be described by the evolvement of 
the HGT network. It usually takes 2 or 3 years to achieve 
the established microbiota among children [47]. To study 
the establishing of microbiota in child, it is worthwhile to 
analyze the evolvement of the HGT network after three 
months, which could be in our future work (Fig. 6).

Family‑specific similarity of maternal and child HGT networks
We measured the similarity of HGT networks to explore 
the evolvement of dynamic gut microbiota (see “Method” 
section). First, child HGT networks show individual simi-
larity. We compared HGT networks between adjacent 
time points chosen from the same individual and ran-
dom two individuals. The network similarity is meas-
ured by Jaccard similarity ∗ degree correlation . As 
illustrated in Fig.  7, for child gut microbiota, HGT net-
works from the same child have significantly higher 
similarity over time than that from different chil-
dren except for the first 2 weeks (Student’s t-test, 

a M0261 Child: Birth b M0261 Child: 14 days c M0261 Child: 1 month

d  M0261 Child: 2 months e  M0261 Child: 3 months f  M0261 Mother: Birth
Fig. 5 Evolvement of HGT networks in family M0261. a–e The temporal evolvement of the Child HGT network. f The maternal HGT network at birth. 
Each node represents a reference genome. Each edge denotes the existence of HGT events between two reference genomes
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Fig. 6 The complexity evolvement of maternal and child HGT networks during the first three months are measured from three aspects: Von 
Newman Entropy, Network size, and HGT event rate
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p = 0.0864, p = 1.07e−8, p = 1.199e−8, p = 1.14e−9)). 
This demonstrates the child form individual-specific gut 
microbiota after one month since birth. Second, for mater-
nal gut microbiota, the HGT network maintains signifi-
cant similarity between adjacent time points in the same 
individual compared to random paired HGT networks 
( p = 8.082e−10, p = 5.274e−5).

Third, to explore the transmission of the HGT network 
from mother to child, we compared maternal and child 
HGT networks within- and across-families. As illustrated 
in Fig. 7, we compared maternal HGT networks at birth 
to child HGT networks at birth, 14 days, 1 month, 2 
month ( p = 0.2845, p = 0.0138, p = 0.0185, p = 0.0055 ). 
HGT networks of a mother and her child have signifi-
cant similarities than those from random two families 
except for maternal and child HGT networks at birth 
( p = 0.2845 ). Besides, we also compared the child HGT 
network at three months to maternal HGT networks 
at gestational week 27, birth, and three months post-
delivery ( p = 0.0267, p = 0.0057, p = 0.0323 ), These 
results show that there is significant similarity between 
HGT networks of a mother and her child. Therefore, 
the mother does pass along microbes harboring family-
specific HGT events to her child, which leads to the simi-
larity of gut microbiota between a mother and her child. 
This is a family-specific gut microbial similarity captured 
by their HGT networks.

Conserved edges in Mother‑to‑Child HGT network
We first focus on edges in the HGT network and identify 
multiple conserved edges corresponding to host states. In 
HGT network, the edge is constructed according to HGT 
events (see “Method” section). The existence of con-
served edges across multiple samples implies that HGT 
events occurred in multiple samples. We analyze con-
served edges by clustering HGT events. By applying clus-
ter analysis to HGT events (see “Method” section), we 
found HGT events that occurred in similar samples form 
HGT event clusters (HECs). For each HEC, we determine 
its label according to the host state of samples to which 
the majority of HGT events belong (see “Method” sec-
tion). Further analysis on HECs helps explain how differ-
ent host states affect the genus composition of conserved 
edges.

We get 54 child HECs and 95 maternal HECs. Child 
and maternal HECs have different composition at 
genus level, see Fig. 8a. The genus composition of HECs 
shows that the Bifidobacterium is the genus that signifi-
cantly different in child and mother (21.59% in Child vs. 
1.82% in Mother, p-value =  2.1604e−6 ), which is con-
sistent with the finding in [48] that Bifidobacterium is 
the predominant bacteria in the child’s gut. Besides, we 
also found that Escherichia (20.24% in Child vs 0% in 
Mother, p-value =  1.6749e−8 ), Microbacterium (6.48% 
in Child vs 33.7% in Mother, p-value  =  1.1742e−10 ), 

Fig. 7 Similarity among temporal HGT networks at different time points for individual children (left), mothers (center), and child-mother paired 
samples (right). The network similarity is defined as Jaccard similarity ∗ degree correlation , here Jaccard similarity measures the similarity between 
node sets of two networks and degree correlation measures the similarity on network topology
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Mycolicibacterium (0% in Child vs 11.78% in Mother, 
p-value  =  1.5939e−4 ) are different in HECs of child 
and mother. Escherichia includes a number of patho-
genic species such as Escherichia coli [49]. The high 
percentage of Escherichia contained in child-specific 
HECs is one common health risk to infants [50]. We 
have observed 13 other species of Escherchia in HECs 
of child including Escherichia sp. KTE172, Escheri-
chia sp. 1_1_43, Escherichia sp. 4_1_40B, Escheri-
chia sp. B1147, Escherichia sp. TW14182, Escherichia 

albertii, Escherichia sp. TW15838, Escherichia sp. 
KTE159, Escherichia fergusonii ATCC 35469, Escheri-
chia sp. KTE52, Escherichia marmotae, Escherichia sp. 
TW10509, and Escherichia sp. TW09231.

HGT communities differ at different age state
To find out preserved local network structure in multi-
ple HGT networks, we detected communities in each 
HGT network. These communities are defined as HGT 
communities. Then we identified and determined the 

a

b
Fig. 8 a Comparison between the composition of 54 child HECs and 95 maternal HECs at genus level; b Phylum composition of 24 child and 148 
maternal clusters of HGT communities
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label of HGT community clusters (HCCs) (see “Method” 
section).

We got 24 child and 148 maternal HCCs in the Mother-
to-Child data set, and get the phylum composition of 
these HCCs as shown in Fig.  8b. The average phylum 
composition of child HCC is Firmicutes: 35.3%, Act-
inobacteria: 29.8%, Proteobacteria: 19.4%, Bacteroidetes: 
15.1%, Others: 0.4%. The average phylum composition 
of maternal HCC is Firmicutes: 78.2%, Actinobacteria: 
10.1%, Bacteroidetes: 7.9%, Proteobacteria: 3.2%, Oth-
ers: 0.6%. Compared with child HCCs, the increasing of 
Firmicutes (p-value = 8.0091e−7 ), the decreasing of Pro-
teobacteria (p-value  =  2.8785e−5 ) and Actinobacteria 
(p-value = 0.0015) are significant. Genomes belonging to 
Firmicutes which plays an important role in maintaining 
the gut health [39] are the main maternal HCCs mem-
bers. Communities in child HCCs are more diverse at 
the phylum level since child HGT network contains more 
nodes belonging to genus from Proteobacteria and Act-
inobacteria. As shown in the genus composition of child 
HECs, these genus include Bifidobacterium, Escherichia, 
etc.

Analysis of longitudinal IBD HGT networks
Disease‑specific similarity of individual HGT networks
We also explored the HGT network similarity in differ-
ent disease states using the longitudinal IBD data set. We 
utilize four similarity metrics, including Jaccard index, 
degree correlation, Pagerank correlation, and clustering 
coefficient, to measure network similarity. For each indi-
vidual, we calculate the four metrics among his HGT net-
works at different time points (tables and heatmaps are 

in Additional files 1 to 5). Finally we get disease-specific 
similarity metrics in CD, UC, and non-IBD controls as 
shown in Fig. 9. The four similarity metrics in Non-IBD 
samples are significantly lower than those in IBD sam-
ples. The lower similarity among Non-IBD HGT net-
works at different time points indicates that healthy gut 
microbiota is more flexible than IBD gut microbiota.

Conserved edges in longitudinal IBD HGT network
We get 38 IBD HECs and 12 Non-IBD HECs. Figure 10a 
compares the composition of these HECs at genus level. 
Compared with IBD HECs, more HGT events in Non-
IBD HECs occur in Prevotella (57.4% in Non-IBD vs. 
7.7% in IBD, p-value =  0.4527), which is a critical bac-
terium for healthy microbiota [51]. In contrast, more 
HGT events in dectected IBD HECs are contained in 
pathogenic genus such as Mycobacterium (0% in Non-
IBD vs 7.18% in IBD, p-value  =  0.2937), Sutterella 
(0.78% in Non-IBD vs 4.82% in IBD, p-value =  0.3894) 
[52], Pseudomonas (0% in Non-IBD vs 1.63% in IBD, 
p-value  =  0.0006). These genera could be treated as 
potential biomarkers. Pseudomonas plays an important 
role in IBD [53]. These findings demonstrate that groups 
harbor group-specific edges (Additional files 2, 3, 4, 5). 
Host states affect the conservation of HGT edges. Identi-
fying these conserved edges helps to locate the key HGT 
events under specific conditions.

HGT communities differ between the IBD and non‑IBD 
individuals
We found 40 IBD and 54 Non-IBD HCCs in the longi-
tudinal IBD datasets. Figure 10b shows the distribution 
of phylum composition of them. The figure implies that 

Fig. 9 Compares the similarity among individual HGT networks at different time points in CD, UC, and non-IBD controls. The four similarity metrics 
are Jaccard index, degree correlation, pagerank correlation, and clustering coefficient
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IBD HGT communities have different phylum compo-
sition with Non-IBD HGT communities. The average 
phylum composition of Non-IBD HCC is Firmicutes: 
70.7%, Bacteroidetes: 14.4%, Proteobacteria: 6.8%, Act-
inobacteria: 5.9%, Verrucomicrobia: 1.9%, Others: 3%. 
The average phylum composition of IBD HCC is Fir-
micutes: 53.6%, Proteobacteria: 19.6%, Actinobacteria: 
14.5%, Bacteroidetes: 9.9%, Others: 2.4%. Compared 
with Non-IBD HGT communities, IBD HCCs have 
less genome nodes from Firmicutes and Bacteroidetes 

which are the two most dominant phyla in the large 
intestine of healthy adults [39]. While the phylum com-
position of IBD-specific HGT communities have sig-
nificant increasing of Proteobacteria (p-value = 0.0194) 
and Actinobacteria (p-value  =  0.0316). Many species 
belonging to Proteobacteria and Actinobacteria have 
strong association with the pathogenesis of IBD [40, 
41].

Figure  11 illustrates the four similar communities 
from one IBD HCC. The four communities are detected 

a

b
Fig. 10 a Comparison between the composition of 38 IBD and 12 Non-IBD HECs at genus level; b Phylum composition of 40 IBD and 54 Non-IBD 
clusters of HGT communities
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from four different IBD patients: E5008C4, H4001C6, 
H4010C3, and M2008C12. They have a high percentage 
of overlapping species and share similar linking patterns 

between species. Since HGT communities in this cluster 
are mainly from the IBD group, their common structure 
can be used as a biomarker of IBD.
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Fig. 11 Four HGT communities from IBD community cluster 1. Segments in the circle represent microbial species. Linkage between two segments 
represents the number of detected HGT events. The four communities have similar structure and are all detected from IBD patients
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Fig. 12 Six randomly selected communities from six different HGT community clusters. The three communities in the first row are from IBD clusters. 
The remaining three communities in the second row are from Non-IBD clusters. The two groups of communities are less similar compared to 
communities within the same group
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As shown in Fig.  12, HCCs detected from IBD and 
Non-IBD possess communities with different compo-
sition. Figure  12a–c are three randomly selected com-
munities from three IBD HCCs. Figure  12d–f are three 
randomly selected communities from three non-IBD 
HCCs. Compared to HGT communities from clusters 
with the same label, HGT communities from clusters 
with different labels share less common members and 
therefore are much more dissimilar.

Moreover, the species in the community of IBD HCC 
are found to be associated with IBD. Figure 12a contains 
species (Mycobacterium sp. VKM Ac-1816D, Mycobacte-
rium sp. 1100029.7, and Mycobacterium sp. 1554424.7) 
from genus Mycobacterium, which includes pathogens 
known to cause IBD [41, 54, 55]. Figure 12b, c contains 
species (Pseudomonas sp. 2588-5, Pseudomonas sp. 
2995-1, and Pseudomonas sp. T) belong to genus Pseu-
domonas, which is also associated with IBD [40].

Gene fusions associated with HGT events in Longitudinal IBD 
data set
HGT event can cause the combination of parts of two 
genes belonging to two different genome sequences to 
fusion a gene (see “Method” section). From the Longitu-
dinal IBD dataset, we found multiple HGT-caused gene 
fusion events that are related to the HGT mechanism, as 
listed following. We detected 2186 gene fusion events, 
which involve 1280 genes and 800 different gene func-
tions. Gene fusion events containing genes associated 
with the mechanism of HGT include recombinase family 
protein (51/2186) [56], plasmid mobilization relaxosome 
protein Mob (39/2186) [57], IS110 family transposase 
(23/2186) [58], site-specific integras (23/2186) [59], 
conjugal transfer protein Tra (20/2186) [60] and trans-
posase (2/2186) [58]. Specifically, as shown in Table 1 in 
Appendix section, we detected 7 and 1 fusions of mul-
tidrug transporter genes in IBD and Non-IBD samples, 
respectively. The HGT event column denotes the two 
genome references for each HGT event. The number in 
the bracket denotes the HGT breakpoint position on the 
reference. Each HGT event consists of two HGT break-
points. Fusion Gene A and B columns describe the infor-
mation of the two fusion genes. The label column denotes 
the label of each sample. The multidrug transporter 
gene could encode multidrug transporters, which play 
an important role in multidrug resistance. By identify-
ing and ejecting xenobiotic substances, multidrug trans-
porters protect bacteria against antibacterial agents [61]. 
Products of the detected multidrug transporter genes 
involved in HGT events include multidrug SMR trans-
porter [62], multidrug transporter AcrB [63], multidrug 
transporter MatE [64], and multidrug efflux RND trans-
porter permease subunit [65].

Method
Reference genomes construction
To construct HGT networks, we downloaded all bacte-
rial genomes from the National Center for Biotechnol-
ogy Information (NCBI). For each taxonomy, we choose 
the genome with the minimal scaffold number and 
highest completeness, whose contamination is less than 
10% in Genome Taxonomy Database (GTDB) taxon-
omy evaluation results [66]. Finally, we obtain 109,419 
bacterial genomes, which consist of 16,093 species with 
1,246,881 scaffolds.

HGT network construction
Figure  13 illustrates the construction procedure of the 
HGT network from raw NGS data. Firstly, we utilized 
Burrows–Wheeler Aligner (BWA) to map paired-end 
reads against reference genomes. Then we took the 
aligned reads as the input of LEMON [15] to detect HGT 
breakpoints on reference genomes. According to the HGT 
breakpoints, the genome sequences are split to segments, 
such as a1 , a2 , b1 , and so on. One HGT event is defined 
as the linkage of two segments belonging to two different 
genome sequences due to HGT, such as (a1, b2) , (a2, b2) , 
(b2, c2) in Fig. 13. In order to construct an HGT network, 
for any two reference genomes, if there exist HGT events 
between them, the two reference genomes are treated as 
nodes and linked by an HGT event. The weight of an edge 
is the number of HGT events between the two reference 
genomes. The three steps in the red box are key parts of 
LEMON, which are described in detail in [15].

Evaluate the goodness of fit for power‑law distribution
The scale-free network has its degree distribution Pk 
follows a power law Pk ∼ k−α , where k is degree and 
α is degree exponent whose value typically satisfies 
2 < α < 3 . As suggested in [43], in order to evaluate the 
goodness of fit for the HGT network to power-law dis-
tribution, we compared it with the other three heavy-
tail distributions: exponential distribution, Weibull 
distribution, and lognormal distribution with positive 
parameter µ . Let D = d1, . . . , dn denote the node degree 
set of HGT network, ∀dv ∈ D , we have dv ≥ 1 since an 
HGT event links two reference genomes, which means 
a genome node in HGT network should link at least 
another node. So the median of D has median(D) ≥ 1 . 
As for distribution Lognormal(µ, σ 2) , its median is 
exp(µ) . Therefore, if we use Lognormal(µ, σ 2) to fit D, we 
must have exp(µ) ≥ 1 , which means µ ≥ 0 . We use the 
log-likelihood ratio test [42] to compare the goodness 
of two fits. In our experiments, for each HGT network, 
we performed three tests: power-law vs. exponential, 
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power-law vs. lognormal_positive, and power-law vs. 
Weibull. In each test, if the ratio is larger than 0, the 
power-law achieves a better fit than the other.

Von Newman entropy
Structural complexity is an important characteristic of 
complex networks. It greatly determines the function 
and status of complex networks. The growth of tempo-
ral networks often leads to structural change, which also 
means a change of complexity. Ye et al. [67] proposed an 
approximation of von Neumann entropy to measure the 
complexity of dynamic networks. Since the simplified von 
Neumann entropy can be interpreted as the thermody-
namic entropy of the network, we can describe the com-
plex dynamic system from the perspective of statistical 
thermodynamics. Therefore, we applied the simplified von 
Neumann entropy to measure the complexity of temporal 
HGT networks. Let H(V, E) denote the HGT network, V 
denotes the vertex set, which represents genomes linked 
by HGT events, E is an edge set, which indicates whether 
there exist HGT events between two genome nodes. Then 
the von Neumann entropy HVN is defined as follows,

Here du is the degree of node u. |V| is the number of 
nodes, (u,v) is an edge in E.

(1)HVN = 1−
1

|V |

−

1

|V |
2

∑

(u,v)∈E

1

dudv

HGT event rate
We take next-generation sequencing (NGS) short reads 
as input of LEMON to detect HGT events on refer-
ence genomes. The amount of raw data and the length 
of reference genomes can affect the number of detected 
HGT events in one sample We normalized the num-
ber of HGT events and define the normalized num-
ber as HGT event rate. Let H denotes the number of 
detected HGT events in sample S, G = {g1, g2, . . . , gN } 
is the set of genomes linked by HGT events. Denote ri 
as the number of reads uniquely mapped onto genome 
gi , gi ∈ G , and denote li is the length of gi . So we get 
two sets R = {r1, r2, . . . , rN } and L = {l1, l2, . . . , lN } . The 
HGT event rate ¯H  is calculated as follows

here 
∑N

i=1 ri/
∑N

i=1 li is approximate to the average read 
depth. ¯H represents the logarithm of the rate between the 
number of HGT events and the read depth.

Similarity metric for HGT networks
After obtaining the HGT networks, we calculated the 
similarity between networks according to the following 
measurements. First, we measured the similarity between 
networks by Jaccard similarity of species that present in the 

(2)¯H = ln
H
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i=1 ri/

∑N
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network. If two HGT networks share more species, then 
they obtain higher Jaccard similarity. Besides species pre-
sent and absent, we also measured network similarity based 
on the topology property for species in networks, e.g., 
degree, PageRank, clustering coefficient. For two networks, 
we find species shared by both networks, record their 
degree in two networks, and calculate the Spearman cor-
relation on the two-degree lists. The generated correlation 
implies the consistency of the importance rank for every 
species in two networks at the aspect of different topology 
properties. Finally, we assigned these comparison pair into 
multiple groups and studied the similarity distribution. To 
test whether the similarity between networks in the same 
family is significantly higher than it between different fami-
lies, we applied a T-test to the similarity values between 
these two groups in different sample times.

Detecting and clustering HGT communities
We detected community in each HGT network in each 
sample and to study the community evolution by compar-
ing those detected HGT communities across time/individ-
ual. First, for community detection, we applied the Leiden 
algorithm [68], which is based on the Louvain algorithm. 
Louvain algorithm is a popular community detection 
methods which optimize the modularity in the network by 
local move and aggregate network iteratively. However, it 
can generate badly connect communities sometimes. Lei-
den overcomes it by adding a smart local move to refine 
the partition of nodes in each iteration. Therefore Leiden 
generates more robust and well-connected communities, 
which is a better solution in our situation. After community 
detection, we further clustered HGT communities detected 
in all different individuals and different times. By applying 
clustering analysis on communities, we can find common 
communities across samples and calculate their compo-
sition within a group. We call the common community 
group as HGT community clusters (HCCs). For clustering, 
the distance between communities is calculated from their 
Jaccard similarity; then, we apply a hierarchical cluster on 
all identified communities to find HCCs.

HGT event cluster
For each HGT event, we recorded the number of samples 
it present. HGT events that show in less than the mini-
mum sample threshold are filtered out. The minimum 
samples threshold is set as 5 and 4 in Mother-to-Child 
and Longitudinal IBD experiments, respectively. Then we 
measured the relationship between HGT events by their 
Jaccard similarity considering the samples they show up. 
After convert similarity to distance, we applied hierarchi-
cal clusters and determined classes by dynamic tree cut. 
We set distance to 0.6 and minimum class sizes as 10 

and 20 for Mother-to-Child and Longitudinal IBD data 
sets, respectively. The outcome of the hierarchical result 
is HGT event clusters (HECs). Each HEC refers to the 
group of HGT events which occur together.

Label clusters of HGT communities and events
Since each cluster of HGT communities/events (HCC/
HEC) consists of HGT communities/events from differ-
ent groups, it may contain multiple labels with an une-
qual number of communities/events. The label of the 
cluster should be determined by the predominant label in 
the cluster. Therefore we determined the label of cluster 
as following. Without loss of generality, we take the deter-
mination of labels for HCCs in longitudinal IBD data set 
as an example. From longitudinal IBD data set, we got 94 
HCCs {clusteri = [ci1, . . . , cin], i = 1, . . . , 94} , here clusteri 
represents the ith HCC, ci· denotes the communities in 
clusteri . According to the group of the sample from which 
the community is detected, each community is labeled 
as Non-IBD or IBD. For community ci· , we denote l(ci·) 
as its label. We counted the number of communities 
belonging to different labels and let COUNTi(Non− IBD) 
and COUNTi(IBD) represent the number of commu-
nities having label Non− IBD and IBD respectively in 
clusteri . If COUNTi(Non-IBD) > COUNTi(IBD) , then 
l(clusteri) = Non-IBD. Otherwise l(clusteri) = IBD . 
However, the number of Non-IBD samples num(Non-
IBD) is 38 and the number of IBD samples num(IBD) is 
109, the larger value of num(IBD) make clusteri tend to 
contain more communities with IBD labels. To correct 
the bias, we set l(clusteri) as follows,

Here COUNTi(Non−IBD)
num(Non−IBD)  and COUNTi(IBD)

num(IBD)  represent the 
relative amount of Non− IBD and IBD communi-
ties that are contained in clusteri respectively. If 
COUNTi(Non−IBD)
num(Non−IBD) <

COUNTi(IBD)
num(IBD)  , it means that HGT com-

munities sharing common structure in clusteri are mainly 
from IBD samples and their common structure could act 
as a candidate biomarker of IBD.

Let [g1j , ..., g
m
j ] denotes the genomes set of community 

cj . For each cluster of communities clusteri = [ci1, ..., cin] , 
we collect its communities’ genomes together and get the 
genome set Gi = [g1i1, ..., g

mi1
i1 , ..., g

mij

ij , ..., g
min
in ] for clusteri , 

here mij is the number of genomes in community cij . The 
phylum/genus to which each genome in Gi belongs could 
be found on NCBI. Then, for clusteri , we get the phylum 
set Pi = [phylum(g1i1), ..., phylum(g

mi1
i1 ), ..., phylum(g

mij

ij ), ..., phylum(g
min
in )] . 

Finally, we figured out the composition of clusteri under 

(3)

l(clusteri) =

{

Non-IBD
COUNTi(Non−IBD)
num(Non−IBD) >

COUNTi(IBD)
num(IBD)

IBD
COUNTi(Non−IBD)
num(Non−IBD) <

COUNTi(IBD)
num(IBD)
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different conditions at the phylum level by calculating the 
percentage of each phylum in Pi . For each cluster of HGT 
events, we collect its genus set and figure out the percent-
age of each genus.

Gene fusions in HGT events
We further extended the HGT network study to gene 
function.

Figure  14 denotes one fusion gene in an HGT event. 
The fusion gene contains two gene parts belonging to 
Gene A on genome reference 1 and Gene B on genome 
reference 2 respectively and a and b are the two HGT 
breakpoints. Since the two HGT breakpoints are in two 
gene regions, the combination of parts of two genes 
caused by HGT forms a fusion gene. We detected HGT 
breakpoints by LEMON and identified the gene fusion. 
So we can link the HGT event to gene function. The gene 
annotations (including Gene ID, start and end positions, 
function description) are collected from NCBI.

Discussion and conclusion
HGT is the process of sharing genetic material among dif-
ferent microbial species. It links different species by trans-
ferring genetic information. By analyzing HGT networks 
constructed from two longitudinal metagenomic sequenc-
ing data sets: Mother-to-Child and longitudinal IBD data 
sets, we found the HGT network is scale-free, whose degree 
distribution follows a power law. Most nodes have a small 
degree and are connected by hub nodes. Moreover, sta-
tistics support the ultra-small world property of the HGT 
network. The distance between two randomly nodes in the 
HGT network could maintain small despite the growth 
of the network. Such a stable internal structure demon-
strates the robustness of the HGT network in the ever-
changing environment. The HGT network also provides 
us an efficient way to model human gut microbiota. The 

development of the child gut microbiota during the first 
three months after birth could be captured by the evolve-
ment of temporal HGT networks. The increasing of HGT 
network complexity and size is led by the growth of strains 
harboring HGT events. Furthermore, we have found a sig-
nificant similarity between the family-specific child and 
maternal HGT networks. Therefore, HGT network could 
characterize bacterial transmission patterns from mother 
to child. It also demonstrates that maternal gut bacteria 
may be an essential source of child gut bacteria.

Analysis of the HGT community and HGT event 
demonstrates that age and disease change the internal 
structure of HGT networks. Compared with healthy indi-
viduals, the inflammatory conditions of the gastrointes-
tinal tract in IBD patients are suitable for the growth of 
bacteria from Proteobacteria and Actinobacteria phylum. 
So HGT communities contain more bacteria from Pro-
teobacteria and Actinobacteria and fewer bacteria from 
Firmicutes. Similar change is also observed in newborn 
children. By clustering HGT communities, we could find 
similar communities across multiple HGT networks that 
are from the same group. These similar communities 
reflect the influence of a specific host state on the struc-
ture of the HGT network and could be treated as poten-
tial biomarkers. The formation of the HGT community 
cluster is led by similar HGT events across samples. 
Through clustering HGT events, we realized that in IBD 
patients, the composition change of HGT communities 
is led by the increasing of HGT events mainly contained 
in the pathogenic genus Mycobacterium, Sutterella, and 
Pseudomonas. While in newborn children, we observed 
the increase of HGT events contained in Bifidobacterium 
and Escherichia. These differences reflect the alteration 
of gut microbiota in different conditions. The summa-
rization of fusion genes in HGT events helps us better 
realize genes associated with HGTs. Many fusion genes 

Genome reference 1: Gene A Genome reference 2: Gene B

Gene Fusion in a HGT event

HGT breakpoint HGT breakpoint 

Fig. 14 Gene fusions in one HGT event
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in HGT events encode proteins, including recombinase 
family protein, plasmid mobilization relaxosome pro-
tein Mob, conjugal transfer protein Tra, and so on, that 
facilitate the horizontal transfer of genetic material. Fur-
thermore, in IBD patients, more fusion genes caused by 
HGT events encode multidrug transporter proteins. This 
reveals that beneficial HGT events contribute to the sur-
vival of associated microbial strains in the gut under the 
specific selection pressure.

In summary, through the HGT network, we research 
human gut microbiota from a systematic perspective. 
The network analysis of Mother-to-Child and longitudi-
nal IBD data sets demonstrate the characteristic of HGT 
networks differs under different conditions. In the future, 
we will apply our pipeline to analyze more HGT net-
works. It helps us get a deeper understanding of the rela-
tionship between host states and microbial interactions.
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Appendix
Multidrug transporter gene fusions in HGT events

 Additional file 1. Spearman correlation between degrees of nodes in 
HGT networks in IBD dataset. 

Additional file 2. Jaccard similarity of nodes in HGT networks in IBD 
dataset. 

Additional file 3. Spearman correlation between PageRank of all nodes in 
HGT networks in IBD dataset. 

Additional file 4. Spearman correlation between the clustering coef-
ficient of all nodes in HGT networks in IBD dataset. 

Additional file 5. The heatmaps of similarity matrix for IBD HGT networks 
measured using Jaccard similarity (Fig. 1), Spearman correlation between 
degrees (Fig. 2), Spearman correlation between PageRank (Fig. 3), and 
Spearman correlation between the clustering coefficient (Fig. 4). The heat-
map of similarity matrix for Infant HGT networks measured using Jaccard 
similarity*degree correlation (Fig. 5).

Table 1 Multidrug transporter gene fusions in HGT events

HGT event Gene A Gene B Label

Gene symbol Description Gene symbol Description

NZ_DS362246.1(124896) 
NZ_DS499674.1(613633)

BACUNI RS1296 Multidrug transporter BACSTE RS1143 Hypothetical protein CD

NZ_GG697149.2(303360) 
NZ_GG697156.2(32286)

FAEPRAA2165 RS0137 Multidrug SMR transporter FAEPRAA2165 RS1330 Stage II sporulation protein CD

NZ_DS499665.1(25120) NZ_
DS499672.1(423580)

BACSTE RS0155 Hypothetical protein BACSTE RS0626 MexE family multidrug efflux 
RND transporter periplasmic 
adaptor subunit

Non

NZ_DS499676.1(402917) 
NZ_DS499675.1(12487)

BACSTE RS1390 Hybrid sensor histidine 
kinase/response regulator

BACSTE RS1181 Multidrug transporter AcrB CD

NZ_DS499672.1(447434) 
NZ_DS499662.1(199650)

BACSTE RS0636 ATP-dependent Clp protease 
Clp

BACSTE RS0090 Multidrug transporter MatE UC

NZ_DS499671.1(180331) 
NZ_DS499673.1(122374)

BACSTE RS0406 Glycoside hydrolase family BACSTE RS0707 Multidrug transporter AcrB UC

NZ_DS499671.1(61003) NZ_
DS499673.1(330329)

BACSTE RS0350 Hypothetical protein BACSTE RS0784 Multidrug efflux RND trans-
porter permease subunit

UC

NZ_DS499673.1(123680) 
NZ_DS499677.1(203460)

BACSTE RS0707 Multidrug transporter AcrB BACSTE RS1579 UDP-3-O-[3-hydroxymyristoyl] 
N-acetylglucosamine 
deacetylas

UC

https://doi.org/10.1186/s13099-020-00370-9
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