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Abstract 

One of the approaches to cure human immunodeficiency virus (HIV) is the use of therapeutic vaccination. We have 
launched the Provir/Latitude 45 study to identify conserved CTL epitopes in archived HIV‑1 DNA according to the HLA 
class I alleles in aviremic patients under antiretroviral therapy (ART). A HIV‑1 polypeptidic therapeutic vaccine based 
on viral sequence data obtained from circulating blood was proposed; here, our aim was to compare the proviral 
DNA in blood and gut‑associated lymphoid tissue (GALT). Peripheral blood mononuclear cells and gut biopsies were 
obtained from two HIV‑1 infected patients under successful antiretroviral therapy. Total DNA was extracted includ‑
ing the proviral DNA. The HIV‑1 reverse transcriptase was sequenced in both compartments using next generation 
sequencing followed by single genome sequencing; phylogenetic trees were established and compared. The proviral 
sequences of both compartments intra‑patient exhibited a very low genetic divergence while it was possible to dif‑
ferentiate the sequences inter‑patients; single genome sequencing analysis of two couples of samples confirmed that 
there was no compartmentalization of the sequences intra‑patient. We conclude that, considering these two cases, 
the proviral DNA sequences in blood and GALT are similar and that the epitope analysis of HIV‑1 provirus in blood 
should be considered as relevant to that observed in the GALT, a hard‑to‑reach major compartment, and can there‑
fore be used for therapeutic vaccine approaches.
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Background
HIV-1 infection can be managed by ART, leading to the 
control of viral replication and improving the health of 
people living with HIV. However, ART cannot be inter-
rupted since this would lead to a rebound of viral repli-
cation [1, 2] as virus establishes cellular (latently infected 
resting CD4 + memory T cells) and anatomical reservoirs 
very early during infection [3–8]. Gut Associated Lym-
phoid Tissue (GALT) is considered to be one of the main 
reservoirs of Simian Immunodeficiency Virus (SIV) and 

HIV infection [9–11]. Cure strategies for HIV-1 include 
therapeutic vaccination [12], although immune response 
observed was not able to control viral replication after 
ART discontinuation [13]. In this context, we launched 
the Provir/Latitude 45 project to identify conserved CTL 
epitopes in the proviral HIV-1 DNA of patients with 
long-term ART [14]. The study involves in silico modeling 
based on the HIV-1 proviral DNA sequences, the HLA 
alleles and the HIV-1 CTL epitopes following sequenc-
ing of the archived DNA from peripheral blood mono-
nuclear cells (PBMC), i.e., from circulating blood. Since 
our initial work was based on proviral DNA in PBMC, we 
assessed whether our observations would be the same in 
another compartment, namely GALT. Herein, we present 
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a phylogenetic comparison of the archived HIV-1 DNA 
in PBMC and GALT from two HIV-1 infected patients at 
success of ART.

Materials and methods
The study participants (referenced as patients 5A and 
10) were recruited at Centre Hospitalier Universitaire 
de Montreal (CHUM). They were Caucasian individuals 
infected with an HIV-1 subtype B and under success-
ful antiretroviral therapy (ART) for more than 4  years. 
For each patient, a sigmoid biopsy was collected during 
colonoscopy 4  years after initiation of successful ART 
and processed as previously described [15]. Matched 
peripheral blood was collected on the same day and 
immediately processed with Ficoll for PBMC isolation, 
performed in parallel with cell extraction from biopsy 
tissue. DNA was extracted from both compartments and 
used for next generation sequencing (NGS) analysis of 
HIV-1 provirus; we used the method already published 
[16, 17] to amplify fragment B, i.e., polymerase (Pol) 
region including RT and integrase. The PCR products 
were purified and quantitated, the library was prepared 
using the Nextera XT DNA Sample Preparation kit; each 
individual library was then sequenced on a MiSeq Illu-
mina platform. Raw data (FASTQ files) were submitted to 
the  SmartGene® NGS HIV-1 module to generate a BAM 
file for each patient and each sample was processed for 
further analysis [18]. The study was carried out using only 
the Pol RT part region of the sequences obtained. Using 
Galaxy and Clustal software, RT gene sequences from 
the two compartments (GALT and PBMC) were selected 
for neighbor-joining analysis from matrix distances cal-
culated after gapstripping of alignments, with a Kimura 
two-parameter algorithm and bootstrap analysis. To do 
so, an alignment was generated that included only reads 
with lengths > 400 bp corresponding to a given region of 
RT (variable according to the patient, from amino-acids 
39 to 202). This length limitation explains the small num-
ber of reads used for this analysis compared to the total 
number of reads covering this region. Phylogenetic trees 
were visualized using Interactive Tree of Life (ITOL) soft-
ware [19]. Single genome sequencing (SGS) was carried 
out according to the method of Palmer et  al. [20]. The 
total extracted DNA of both compartments was diluted 
in TE buffer at a dilution yielding a PCR product in three 
out of 10 PCRs. In this case, according to Poisson’s distri-
bution, the dilution contains one copy of cDNA per posi-
tive PCR at about 80% of the time. Two rounds of PCR 
for RT amplification were followed by visualization of 
the PCR products. The 1:9 dilution was found to be opti-
mal for Sanger sequencing and the sequences (assum-
ing that there was no mixture of population) of PBMC 
and GALT obtained were aligned by Clustal to obtain a 

neighbor-joining tree. For evaluation of evolutionary 
divergence, the median, mean and range of the number 
of base substitutions per site between RT sequences were 
calculated. Analyses were conducted using the Maximum 
Composite Likelihood model [21]. The analysis involved 
4100 nucleotide sequences. Codon positions included 
were 1st + 2nd + 3rd + Noncoding. All positions contain-
ing gaps and missing data were eliminated. There was 
a total of 376 positions in the final dataset. Evolution-
ary analyses were conducted in Molecular Evolutionary 
Genetics Analysis (MEGA) 7 software [22].

Results
The phylogenetic trees are presented in Fig. 1.

NGS analysis of patient 5A shows that the sequences 
from blood and GALT compartments exhibit a low 
genetic divergence and are located on the same branch; 
however, there is a slight divergence between these 
sequences and the SGS analysis allows to demonstrate 
that there is a true intermingling of the sequences, there-
fore evidencing a lack of compartmentalization.

NGS analysis of patient 10 first indicates, compared to 
the NGS data from patient 5A, that we can fully differ-
entiate the HIV-1 isolates from both patients although 
they are of the same subtype (B subtype); focusing 
again on patient 10, we can draw the same conclusion, 
as for patient 5A, on the low genetic divergence of the 
sequences between both compartments; when analysing 
the SGS data, the clonal PBMC sequences are located at 
the origin of the GALT NGS part of the tree, then found 
in the PBMC part of the NGS tree while GALT clonal 
sequences are located at the end of the GALT tree and the 
origin of the PBMC tree; as for patient 5A we can con-
clude that there is no evidence of compartmentalization.

To confirm that all the sequences were clustered 
by patient, we estimated the evolutionary divergence 
between sequences (Table 1) considering patients 5A and 
10. HIV-1 clusters were identified at maximum genetic 
distances between 4.5 and 7.5% and bootstrap support 
threshold varied between 70 and 99% [23]. As sequences 
from patients 5A and 10 are assembled with a median 
divergence of 5.3% and 2.2% respectively with bootstrap 
values of 80% and 93%, we confirm that these sequences 
from GALT and PBMC formed a specific cluster per 
patient.

Discussion
Archived viral DNA is found in intestinal tissue at a 
higher concentration than in PBMCs in ART patients 
[24], although the distribution of DNA in CD4 + CCR7 + , 
transitional memory and effector memory CD4 + T cells 
is different in blood and intestinal compartments [25]. 
GALT is therefore a compartment of major importance 
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in the pathophysiology of HIV infection [26, 27]. The 
data presented here are not related to the quantification 
of archived DNA but rather to a comparison of the RT 
sequences obtained by NGS in GALT and PBMC. In that 
regard, Van Marle et al. [28] have studied biopsies from 
infected untreated individuals and sequenced the nef and 
RT genes of the viral RNA from blood (PBMC) and dif-
ferent parts of the gut by cloning and Sanger sequencing; 
they concluded that there is a compartmentalization of 
the virus in the gut reservoir. On the other hand, Lerner 
et al. [29] found a low diversity of the GALT and PBMC 
viruses in patients having experienced a voluntary treat-
ment interruption while Imamichi et  al. [30] did not 
demonstrate any difference between RNA and DNA 
sequences from gut and blood of patients chronically 
infected with HIV-1. Studying HIV-1 infected patients 

at early and chronic infection stages, Rozera et  al. [31] 
found a more pronounced compartmentalization of pro-
viral quasispecies in gut compared with PBMC samples 
in patients with early infection compared with chronic 
patients. The loss of gut/PBMC compartmentalization in 
more advanced stages of HIV infection was confirmed by 
longitudinal observation.

Regarding ART treated patients, Evering et al. [32] have 
studied the variability of the proviral DNA in the gut and 
blood compartments by SGS of the env part of the virus. 
They showed absence of evolution of the env sequences 
in the GALT and in PBMC; the authors mention that 
they cannot rule out the possibility of evolution in other 
viral genomic regions of HIV-1 such as pol which have 
not been investigated. Josefsson et al. [33] have compared 
the HIV DNA in PBMC and GALT from patients being 

2030 RT sequences of pa�ent 5A
Branch length : 0,01369
Bootstrap : 80

2038 RT sequences of pa�ent 10
Branch length : 0,01633

Bootstrap : 93

1% divergence GALT

PBMC

GALT
PBMC

Fig. 1 Phylogeny of RT sequences of PBMC and GALT from patients 5A and 10. The NGS sequences are in black. SGS: the symbols denote sampling 
location and patients: patient 5A PBMC (red star), patient 5A GALT (red square), patient 10 PBMC (green star), patient 10 GALT (green square)
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on successful ART; they have used SGS technology and 
showed that there is no significant difference between 
the sequences from both compartments. They concluded 
that the HIV reservoir is stable on long-term suppres-
sive ART and raise the hypothesis that the population 
of infected cells exhibiting a low variability of the virus 
could be maintained by homeostatic cell proliferation.

The patients of our study are similar to those of the 
two publications mentioned above i.e., ART- treated 
patients with controlled viral load and therefore a sta-
ble viral reservoir; the phylogenetic inferences obtained 
after NGS evidenced a very low genetic distance between 
the GALT and PBMC compartments intra-patient. On 
the other hand, it is possible to differentiate the GALT/
PBMC sequences inter-patients; the SGS analysis per-
formed plus the genetic divergence values after NGS 
and SGS are concordant with a high similarity between 
proviruses intra-patient. It must be underlined that the 
SGS technique decreases taq-induced recombination 
and nucleotide mis-incorporation, providing therefore a 
more reliable conclusion than conventional cloning [20].

Among the limitations of our study, we must note 
the fact that only the RT part of the proviral DNA has 
been considered and also that we have analyzed global 
archived DNA molecules without differentiating nonin-
fectious and replication competent genomes [34]; how-
ever, more recent data show that even defective proviral 
DNA molecules can be expressed and yield viral proteins 
recognized by CTL T CD8 + lymphocytes [35].

In conclusion, our results confirm that the proviruses 
in GALT and PBMC are very similar in these patients 
under ART and who could be the target population of 
choice for a therapeutic vaccine and indicate that the 

analysis of the blood compartment can provide results 
that can extrapolated to the gut compartment, a major 
reservoir of HIV.

The strategies used in the future, whether they will be 
associated with a shock-and-kill approach (and a thera-
peutic vaccine is a part of this approach) or block-and-
lock effect based on HIV silencing [36], will have to 
consider the proviral DNA of the archived virus not only 
in the blood but also in different tissue reservoirs includ-
ing the gut.
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