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Abstract 

Background: Amoxicillin-resistant H. pylori strains are increasing worldwide. To explore the potential resistance 
mechanisms involved, the 3D structure modeling and access tunnel prediction for penicillin-binding proteins (PBP1A) 
was performed, based on the Streptococcus pneumoniae, PBP 3D structure. Molecular covalent docking was used to 
determine the interactions between amoxicillin (AMX) and PBP1A.

Results: The AMX-Ser368 covalent complex interacts with the binding site residues (Gly367, Ala369, ILE370, Lys371, 
Tyr416, Ser433, Thr541, Thr556, Gly557, Thr558, and Asn560) of PBP1A, non-covalently. Six tunnel-like structures, 
accessing the PBP1A binding site, were characterized, using the CAVER algorithm. Tunnel-1 was the ultimate access 
route, leading to the drug catalytic binding residue (Ser368). This tunnel comprises of eighteen amino acid residues, 
8 of which are shared with the drug binding site. Subsequently, to screen the presence of PBP1A mutations, in the 
binding site and tunnel residues, in our clinical strains, in vitro assays were performed. H. pylori strains, isolated under 
gastroscopy, underwent AMX susceptibility testing by E-test. Of the 100 clinical strains tested, 4 were AMX-resistant. 
The transpeptidase domain of the pbp1a gene of these resistant, plus 10 randomly selected AMX-susceptible strains, 
were amplified and sequenced. Of the amino acids lining the tunnel-1 and binding site residues, three (Ser414Arg, 
Val469Met and Thr556Ser) substitutions, were detected in 2 of the 4 resistant and none of the sequenced susceptible 
strains, respectively.

Conclusions: We hypothesize that mutations in amino acid residues lining the binding site and/or tunnel-1, resulting 
in conformational/spatial changes, may block drug binding to PBP1A and cause AMX resistance.
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Background
Helicobacter pylori is a prevalent etiologic agent for 
chronic gastritis, gastric and duodenal ulcers, and in 
rare cases, gastric adenocarcinoma [1]. A global sys-
tematic review concluded that approximately 4.4 billion 

individuals are positive for H. pylori infection world-
wide, and its prevalence varies from 18.9 to 87.7% of the 
populations [2]. This infection is also associated with an 
increased incidence of extra-gastric diseases, such as 
cardiovascular, respiratory, hepatic, and allergic diseases 
[3]. Successful eradication of H. pylori infection would 
effectively reduce the prevalence of the mentioned com-
plications, especially gastric cancer, and is therefore con-
sidered as one of the controllable factors in the process of 
gastric carcinogenesis [4].
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Amoxicillin (AMX), as a bacterial cell wall synthesis 
inhibitor, is a common constituent of first-line and res-
cue treatment, due to its high efficiency and fewer side 
effects [5]. Its use is recommended in a 14-day quadru-
ple treatment regimen and 10-day sequential treatment 
[6]. A recent meta-analysis, comprising 66,142 clinical 
isolates from 178 studies, of 65 countries, declared up 
to 10 percent primary resistance to AMX in clinical H. 
pylori strains [7].

AMX belongs to the beta-lactam family of antibiot-
ics that binds the  penicillin-binding proteins (PBPs) 
[8]. Bacterial PBPs are membrane-associated enzymes, 
whose activities are essential for cell division and are 
classified into low-molecular-mass (LMM) and high-
molecular-mass (HMM) categories [9, 10]. PBPs are 
responsible for glycosyltransferase and transpeptidase 
activities that lead to cross-linking of d-alanine and 
d-aspartic acid in bacterial cell walls [11]. Crosslinking 
adjacent peptidoglycan strands, via peptide stems, is 
essential for bacterial cell wall integrity and cell viabil-
ity [11, 12]. HMM-PBPs constitute the main targets of 
β-lactam antibiotics, including AMX [13, 14]. Bacterial 
resistance to AMX is mainly due to the production of 
β-lactamase or structural alterations in one of the PBPs, 
involved in cell wall synthesis.

Helicobacter pylori seem to differ in this regard, as 
it is evidenced that point mutations in the pbp1a gene 
are the main reason for its AMX-resistance [15, 16]. 
Nine different PBPs have been reported for H. pylori; 3 
HMM, including PBP1 (72  kDa), PBP2 (62  kDa) and 
PBP3 (54 kDa) [17, 18], and 6 LMM (PBP4-9) with 50, 44, 
35.5, 33, 28 and 21  kDa molecular weights, respectively 
[17, 19, 20]. Class A PBPs have both glycosyltransferase 
and transpeptidase activities, whereas class B PBPs pos-
sess only the latter. Furthermore, the combination of 
these two enzymatic activities of PBP1A is essential for 
cell wall homeostasis [21]. AMX has binding affinities for 
PBP1, PBP2, and PBP3. However, in resistant H. pylori 
strains, its affinity for PBP1A is significantly diminished 
[18]. Accordingly, mutations in PBP1A are considered 
the predominant cause of AMX resistance in H. pylori 
[15, 22, 23].

Using homology modeling, the role of previously 
reported amino acid substitutions of H. pylori PBP1A, in 
binding to AMX has been carefully analyzed [24]. How-
ever, no crystal structure information is available on the 
H. pylori PBP1A or its PBPs in general. Consequently, the 
exact locations of the active and antibiotic binding sites 
remain to be explored. In this study, we carried out cova-
lent docking analysis of PBP1A with AMX, to character-
ize the interactions between AMX and its binding site, as 
well as to identify the potential drug access routes. Sub-
sequently, we evaluated any existing mutations of these 

residues, in our few resistant clinical strains of H. pylori, 
in correlation with their drug susceptibility.

Results
Structure prediction of PBP1A and covalent molecular 
docking with AMX
The best 3D structural model of H. pylori PBP1A was 
built with the I-TASSER server, using the top 10 thread-
ing templates, shown in Additional file  1: File S1. This 
best model revealed the closest structural similarity 
to Staphylococcus aureus PBP2 (PDB ID: 3DWK) with 
24.5% sequence identity, 87.4% sequence coverage, and 
an RMSD of 0.78 Å. The minimized 3D structure model 
of PBP1A is shown in Fig. 1b. MolProbity analysis on the 
Ramachandran plot of the model identified 86.23% of 
the residues to be in the favored regions, and only 4.23% 
stand as outliers (Additional file 2: Figure S1). The Mol-
Probity score, which is on the same scale as the X-ray 
resolution and combines the clashscore, rotamer, and 
Ramachandran evaluations, was 1.76 for this structure. 
These results indicate that the minimized model has a 
reasonable quality for subsequent analysis. After model 
minimization and validation, covalent docking with 
AMX was performed.

X-ray crystallography of the antibiotic recognition site 
of PBP1A in Streptococcus pneumonia, has identified 
Ser370, as the catalytic residue that can form a cova-
lent interaction with the β-lactams [25]. According to 
pairwise sequence alignment of PBP1A of H pylori and 
Streptococcus pneumonia, this residue is the equivalent of 
Ser368 in H. pylori (Fig. 1a). The insert in Fig. 1b shows 
the binding site of H. pylori PBP1A, which is relatively 
narrow. In the interaction of PBPs with β-lactams, the 
catalytic serine attacks the β-lactam ring and causes an 
acyl-enzyme complex [26]. To further explore this inter-
action, we have carried out the covalent docking of AMX 
with Ser368 of PBP1A. The Ser368 and AMX, which 
connect covalently, are shown in red and blue in Fig. 1c. 
As depicted in this figure, the AMX-Ser368 covalent 
complex interacts with Gly367, Ala369, ILE370, Lys371, 
Tyr416, Ser433, Thr541, Thr556, Gly557, Thr558, and 
Asn560, in the binding site of PBP1A, non-covalently. 
These residues were in agreement with the most prob-
able binding residues of PBP1A, which were predicted by 
COACH (Additional file 3: File S2).

The access routes to the AMX binding site in PBP1A
As mentioned above, the binding site of PBP1A is very 
narrow, so any modifications to the binding site and/
or its access routes may affect drug access. Using the 
CAVER tool, the potential access tunnels for PBP1A of 
H pylori were predicted (Fig.  2). These results showed 
six possible access routes for the ligand (AMX) to access 
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the binding site. All six tunnels were identical in width 
(radius of ~ 1 Å), with varying lengths of 8.1 Å, 11.1 Å, 
24.2  Å, 24.7  Å, 28.5  Å, and 38.5  Å, respectively. The 
amino acid residues lining the binding site and the six 
access tunnels are depicted in Fig.  2 and its inset table, 
respectively. Tunnel-1 is the final access route, leading to 
the drug binding site and its catalytic (Ser368) residue. 
This tunnel is comprised of 18 amino acid residues at the 
following positions: 366, 367, 368, 369, 370, 371, 414, 415, 
416, 433, 435, 468, 469, 470, 471, 558, 559, and 560, which 
include the catalytic residue, as well as 8 residues of the 
drug binding site (inset Table of Fig. 2, underlined). The 
other five tunnels converge with tunnel-1 before reaching 
the drug binding site.

The amoxicillin resistance rate and PBP1A mutations
We then evaluated mutations pertaining to the above 
listed residues, in our clinical H. pylori strains, in accord-
ance with their drug susceptibility. Of the 100 clinical 
strains of H. pylori tested for amoxicillin susceptibility via 
E-test, 4 were found AMX-resistant. The transpeptidase 
domain of the pbp1a gene, which is considered its hyper-
mutable region in H. pylori, was amplified and sequenced 
in these 4 AMX-resistant and 10 randomly selected 
AMX-susceptible strains. The sequences were aligned 

against the reference (ATCC: 26695 and J99) strains, and 
the detected amino acid substitutions in the binding site 
and tunnel-1 residues are depicted in Table 1 and Addi-
tional file 4: Figure S2. Of the above-listed residues, the 
only amino acid substitutions, namely Ser414Arg, Val-
469Met, and Thr556Ser, belonging to tunnel-1 or the 
binding site residues, were detected in 2 of the 4 AMX-
resistant strains. Whereas, none of the listed residues 
were altered (mutated) in the 10 randomly sequenced 
sensitive strains (Table 1).

Discussion
In recent decades, Helicobacter pylori resistance to anti-
biotics has significantly increased, thereby decreasing its 
eradication rate worldwide [27]. AMX, a β-lactam anti-
biotic, has long been a common constituent of first-line 
multiple drug therapy against H. pylori infection. The 
worldwide rate of AMX resistance was reported as an 
average of 4.55%,  in a recent systematic review [27]. In 
accordance with the worldwide average rate, a 4 percent 
rate of resistance was detected in our study.

AMX-resistance causing factors include mutations in 
PBPs [28], β-lactamases [29], efflux pumps [30], and bio-
film formation [31]. Point mutations in the pbp1a gene 
are considered as the leading cause of AMX resistance in 

Fig. 1 The PBP1A sequence, structure in H. pylori and its interaction with AMX. a A segment of the pairwise sequence alignment of PBP1A 
in H. pylori and Streptococcus. The equivalent Ser368 and Ser370 in H. pylori and Streptococcus are shown in red. b The 3D structural model, 
transglycosylase, and transpeptidase domains are shown in silver, pink, and green cartoon secondary structures, respectively. The surface of the 
transpeptidase domain and the binding site are depicted in the inset figure. c The formation of the covalent interaction between the AMX and 
Ser368. The Ser368 and AMX are colored in red and blue, respectively. In the 2D panel, the non-covalent interaction between AMX-Ser368 and other 
PBP1A residues are presented. The protein residues involved in hydrophobic contacts and hydrogen bonds are represented in red spoked arcs and 
green dotted lines, respectively
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H. pylori [16]. β-lactamases, although involved in AMX-
resistance in other gram-negative bacteria, seem less 
critical in H. pylori [29, 32]. On the other hand, although 
mutations in pbp2 and pbp3 genes may also cause AMX 
resistance [28], those corresponding to the C-terminus 
of PBP1A protein, are considered as the main determi-
nants of stable resistance in H. pylori [18]. The potential 
resistance provided by the PBP2X and PBP2B mosaics is 
limited by the presence of a “virgin” PBP1A, which still 
justifies particular effectiveness for β-lactam treatment. 
Thus, high level of resistance is dependent on an altered 
PBP1A [26].

In order to better understand this phenomenon, we 
used computational tools to analyze the interactions 
between AMX and PBP1A. In Staphylococcus aureus, 
PBPs form a stable covalent bond between their catalytic 
Ser370 residues and AMX, thereby preventing bacte-
rial cell wall synthesis by inactivating the transpeptidase 
domain [33]. It is known that modification of amino 
acid residues lining the drug access tunnels affects the 
enzyme’s activity, specificity, enantioselectivity, and sta-
bility [34, 35]. In case of enzymes, such as xylanase, with 

buried binding sites, transporting substrates between 
active sites and the surrounding solution, through the 
access tunnels is a critical step in the catalytic cycle of 
these enzymes. Therefore, tunnel modification impacts 
the catalytic properties of enzymes [36]. It has been 
suggested that Lys371, Ser433, and Lys555 in H. pylori 
PBP1A, can form hydrogen bond interactions, with the 
putative catalytic Ser368 [24]. Our study has identified 
the common presence of Lys371 and Ser 433 amongst the 
binding site and tunnel-1 residues, and Gly367, Lys371, 
and Thr558 in hydrogen bond interaction with Ser368. 
Thr556 is another binding site residue, introduced as an 
important residue, in or adjacent to the penicillin-bind-
ing motifs [24]. Val469, one of the tunnel-1 amino acid 
residues, is also identified as one of the key residues in 
amoxicillin resistance, that is located in a loop enclosing 
the PBP1A binding site [24].

Then, to confirm our results, we evaluated mutations 
in the binding site and tunnel-1 residues, in our clini-
cal H. pylori strains isolated under gastroscopy, which 
underwent AMX susceptibility testing. In addition, we 
performed a literature survey on the subject (Table  2). 

Fig. 2  Presentation of the AMX binding site and access tunnels in PBP1A. The binding site residues and the six access tunnels are shown in orange, 
blue, cyan, magenta, pink, purple, green. Inset table: Amino acid residues of the binding site and those lining the access routes to the PBP1A 
binding site in H. pylori are listed. The tunnel cells are colored based on the tunnels in the 3D structure. The Ser368, which is connected covalently to 
the AMX, is depicted in red. The residues, commonly present in all tunnels are depicted in yellow highlights. The common residues of the binding 
site and tunnel-1 are underlined
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The  our experimental data on our very limited number 
of resistant strains, identified Ser414Arg, Val469Met, 
and Thr556Ser  substitutions (belonging to tunnel-1 

and the binding site residues), in 2 of the 4 AMX-resist-
ant and none of the 10 randomly sequenced sensitive 
strains. Accordingly, amino acid substitutions of bind-
ing site residues, including Ala369Thr (3 out of 4) [28] 
and Thr541Ile (1 out of 3) [18], Asn560Thr (1 out of 4) 
[23], and Thr556Ser (7 out of 9) [16, 18, 23, 29] have 
been previously reported in AMX-resistant and none of 
the susceptible H. pylori strains (Table  2). In our study, 
a binding site (Thr556Ser) mutation was only seen in 1 
of the 4 resistant and none of the sequenced susceptible 
strains. In agreement with our findings, experimental 
induction of Thr556Ser mutation decreased the AMX 
susceptibility of the affected H. pylori strain, from 0.5 to 2 
(mg/L) [16]. Similarly, the structural data on pneumococ-
cal PBPs reveals that mutations surrounding the binding 
site impact the protein’s total charge and polar character, 
leading to the encapsulation of the binding cleft [37]. A 
molecular dynamics simulation study of Streptococ-
cus pneumoniae PBP1A showed that the key regions of 
the binding pocket in mutant strains were more flex-
ible, allowing for the detachment of a third-generation 
β-lactam (cefotaxime) [38].

Based on the crystal structure of S. pneumoniae 
PBP1A, mutations in the hotspot of the catalytic (bind-
ing) site entrance, could considerably change the tun-
nel entry characteristics by modifying surface polarity, 
which may, in turn, modify the drug accessibility of the 
mutated PBP1A binding site [25]. Accordingly, confor-
mational mutations in tunnel-1 residues are expected 
to play a role in creating resistance, as they affect the 
drug’s access to the enzyme’s active site. In our study, 
tunnel-1 (Ser414Arg, Val469Met) mutations were only 
seen in 2 of the 4 resistant and none of the 10 suscep-
tible strains. In agreement with our findings, mutations 
in the tunnel-1 residues are also previously reported in 
AMX-resistant H. pylori strains (Table  2). These resi-
dues, in addition to Ala369Thr and Asn560Thr (stated 
above), include Phe366Leu (7 out of 7 resistant strains) 
[15], Ser414Arg (31 out of 104 resistant and only 1 out of 
133 sensitive strains) [15, 18, 22, 28, 39], and Val469Met 
(2 out of 5 resistant and none of the 11 sensitive strains) 
[24]. The Ser414Arg mutation is the most frequently 
reported mutation in AMX-resistant H. pylori strains. 
Its determining role in AMX resistance is evidenced by 
increased MIC of the parent strain from 0.125  mg/L to 
0.5–1  mg/L, in the experimentally mutated strain [15]. 
In agreement with previously published studies [28, 40], 
Ser414 is among the six critical sites (Ser414, Thr438, 
Phe473, Ser543, Thr556, and Asn562) for AMX binding 
to PBP1A. Three of these substitutions are previously 
reported in multiple clinical H. pylori strains (Table  2); 
Ser414Arg in tunnel-1, Thr556Ser in the binding site, and 
Asn562Tyr [24]. Taken together, these  our findings on 

Table 1 Detected mutations in the PBP1A drug binding site and 
tunnel-1 residues of AMX- resistant and susceptible strains

Strains Binding site Tunnel-1 MIC (mg/L)

Ref

J99 – – S

26,695 – – S

Sensitive

 MK984227 – – 0.064

 MK984220 – – 0.064

 MK984215 – – 0.094

 MK984213 – – 0.125

 MK984219 – – 0.125

 MK984223 – – 0.125

 MK984221 – – 0.125

 MK984226 – – 0.094

 MK984225 – – 0.032

 MK984214 – – 0.125

Resistant

 MK984217 – – 0.38

 MK984216 – Ser414Arg
Val469Met

0.5

 MK984218 Thr556Ser Ser414Arg 0.38

 MK984224 – – 0.75

Table 2 Reported mutations in the PBP1A binding site and 
tunnel-1 residues of AMX-resistant and susceptible strains

1 Resistant
2 Sensitive

Mutations Binding site Tunnel-1 No of strains
R1/S2

Ref

Ala369Thr ✓ ✓ 3/4R–0/12S [28]

Thr541Ilu ✓ – 1/3R–0/9S [18]

Asn560Thr ✓ ✓ 1/4R–0/5S [23]

Thr556Ser ✓ – 8/12R–0/19S [16]
[18]
[23]
[29]
This study

Phe366Leu – ✓ 7/7R [15]

Ser414Arg ✓ ✓ 31/104R–1/106S [15]
[18]
[22]
[28]
[39]
This study

Val469Met – ✓ 2/5R–0/11S [24]
This study
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our  limited number of clinical strains and those of oth-
ers (Table 2), support the critical essence of the binding 
site and tunnel-1 residues, in potentially causing AMX 
resistance.

Conclusions
To conclude, in the first step, using computational 
tools, we have identified the AMX binding site residues 
in PBP1A and the six tunnel-like routes accessing it. 
Accordingly, we and others have  detected mutations in 
these amino acids, almost entirely in the AMX-resistant 
and not in the sensitive H. pylori strains. It can thus be 
assumed that these mutations may hinder AMX access to 
the catalytic Ser368 residue. Therefore, we hypothesize 
that conformational mutations in amino acid residues 
lining the binding site as well as tunnel-1, will likely cause 
AMX resistance, as they may block every route for AMX 
accessing and  binding to PBP1A. More research, how-
ever, is required to accurately analyze the effects of these 
conformational changes, on drug binding, via crystallo-
graphic studies of the PBP1A in H. pylori.

Materials and methods
Computational methods
3D structure prediction and tunnel detection in AMX binding 
to PBP1A
Due to lack of access to H. pylori PBP1A crystal structure, 
the I-TASSER server (https:// zhang lab. ccmb. med. umich. 
edu/I- TASSER/) [41] was used to obtain a 3D structural 
model. The FASTA sequence of PBP1A for the reference 
(ATCC26695) strain was submitted as an input, without 
assigning any restraints or templates. The best-predicted 
model with the highest confidence was built from the 
most significant templates, in the threading alignments. 
This model had the closest structural similarity to that 
of Staphylococcus aureus PBP2 (PDB ID: 3DWK) on the 
Protein Data Bank (PDB) database (https:// www. rcsb. 
org/). The model was minimized for 20,000 steps of the 
conjugate gradient method, with the CHARMM27 [42] 
force field in NAMD 2.13 [43] package. MolProbity [44] 
was used to validate the quality of the minimized struc-
tural model. To identify the tunnels of the PBP1A mini-
mized structure, the CAVER 3.0 [45] software was used. 
The probe radius was set to 1 Å and the binding site was 
chosen as the starting point. Other CAVER parameters 
were set as default.

Covalent molecular docking of AMX with PBP1A
For molecular docking studies, the minimized conforma-
tion of the PBP1A and the AMX structure, which was 
obtained from the ZINC database (http:// zinc. docki ng. 
org/), were used as the receptor and ligand, respectively. 
In order to attach the ligand to the receptor structure 

covalently, ligand alignment was performed. For ligand 
alignment, the receptor and ligand files, the ligand atom 
indices, and the SER368 catalytic residue were specified. 
The standard PDBQT files, the covalent ligand struc-
tures,  rigid and flexible components PDBQT, AutoGrid, 
and AutoDock parameter files were prepared for dock-
ing, using MGLTools 1.5.6 [46]. Which also generated the 
rigid and flexible components PDBQT, AutoGrid, and 
AutoDock parameter files.

The docking box (with 27 × 28 × 30 Å dimensions) was 
defined around Ser368, as the catalytic residue for cova-
lent interaction. The genetic algorithm was used as the 
searching algorithm with 200 runs. The “unbound_model 
bound” entry in the DPF file was manually edited to 
“unbound_energy 0.0”. All other parameters were set to 
default values. The AutoGrid and AutoDock 4.2 [47] pro-
grams were used according to standard procedures. The 
best covalent interaction of AMX-PBP1A, with the low-
est free energy, was used for subsequent analysis.

The conformations were shown by VMD1.9.3 [48]. 
Finally,  LigPlot+v.1.4 [49] analysis determined the PBP1A 
residues involved in interaction with AMX and their 
interaction types. Also, the COACH web server (https:// 
zhang lab. ccmb. med. umich. edu/ COACH/) [50] was used 
as a meta-server, to predict the protein–ligand binding 
site and compare the docking results.

Experimental methods
Bacterial strains and growth conditions
One hundred clinical H. pylori isolates were collected 
from 290 dyspeptic patients, via upper endoscopy, from 
2013 to 2018, at Amiralam Hospital, Tehran, Iran. Gas-
tric biopsy specimens were cultured onto Brucella agar 
medium (Merck, Germany), supplemented with 10% 
defibrinated sheep blood, amphotericin B (8  mg/L), 
vancomycin (10  mg/L), and trimethoprim (5  mg/L) and 
incubated under microaerobic conditions (O2, 5%; CO2, 
10%; N2, 85%) at 37 °C for 3–5 days [51]. Sample collec-
tion was performed according to the approved protocols 
by the Committee on Ethical Issues in Medical Research, 
Pasteur Institute of Iran (Ref.No.IR.PII.REC.1394.57) and 
every patient provided written informed consent.

Amoxicillin susceptibility testing
For each isolated H. pylori strain, a 3.0 McFarland stand-
ard bacterial suspension was prepared in 1  mL sterile 
saline. One hundred microliters of this bacterial suspen-
sion was spread onto Muller Hinton agar, with 7% (v/v) 
sheep blood, using sterile cotton swabs. E test (Epsilom-
eter test, BioMerieux France) strips were placed onto 
the plates and incubated at 37 °C, under microaerobic 

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://www.rcsb.org/
https://www.rcsb.org/
http://zinc.docking.org/
http://zinc.docking.org/
https://zhanglab.ccmb.med.umich.edu/COACH/
https://zhanglab.ccmb.med.umich.edu/COACH/
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conditions for three days [50]. Tested strains were con-
sidered resistant to AMX, if the minimum inhibitory 
concentrations (MIC) were: > 0.125 μg/mL [53].

Amplification of the pbp1a gene
The genomic DNA from H. pylori isolates were extracted 
and purified, using the DNA Micro Kit (Qiagen, USA). 
Pbp1a gene amplification was carried out by PCR, using 
primers PBP1-F TCG TTA CAG ACA CGA GCA CC) and 
PBP1-R (CGT GTT ATC GTC CCT CCC AA) and Amp 
ONE™ αPfu DNA polymerase kit (GeneAll Biotechnol-
ogy, South Korea). The primers were designed using 
Primer3 (NCBI), based on the pbp1a gene sequence 
of 26695 reference strain. The transpetidase domain 
of PBP1A, corresponding to nucleotides 998 to 1758 of 
pbp1a gene (> NC_000915.1) was amplified. The PCR 
reaction was carried out at 95 °C for 5 min, followed by 
40 cycles of 95  °C for 10  s and 55  °C for 30  s, and final 
extension at 72  °C for 60  s. The expected PCR product 
was 761 bp. The pbp1a gene sequences, verified by Sanger 
sequencing at Pishgam Biotech Co., were deposited 
into the GenBank database, under the following acces-
sion numbers: MK984213-MK984221 & MK984223-
MK984227. The obtained DNA sequences were aligned 
against that of ATCC 26695 reference strain. Sequence 
analysis was performed using the ClustalW sequence 
alignment tool, available in the CLC Main Workbench 
(version 5.5).
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