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Abstract 

Background: Gut microbiota is closely associated with host health and disease occurrence. Host genetic factor plays 
an important role in shaping gut microbial communities. The specific mechanism of host-regulated gene expression 
affecting gut microbiota has not been elucidated yet. Here we conducted a transcriptome-wide association study 
(TWAS) for gut microbiota by leveraging expression imputation from large-scale GWAS data sets.

Results: TWAS detected multiple tissue-specific candidate genes for gut microbiota, such as FUT2 for genus Bifido-
bacterium in transverse colon (PPERM.ANL = 1.68 ×  10–3) and SFTPD for an unclassified genus of Proteobacteria in trans-
verse colon (PPERM.ANL = 5.69 ×  10–3). Fine mapping replicated 3 candidate genes in TWAS, such as HELLS for Strepto-
coccus (PIP = 0.685) in sigmoid colon, ANO7 for Erysipelotrichaceae (PIP = 0.449) in sigmoid colon. Functional analyses 
detected 94 significant GO terms and 11 pathways for various taxa in total, such as GO_NUCLEOSIDE_DIPHOS-
PHATASE_ACTIVITY for Butyrivibrio (FDR P = 1.30 ×  10–4), KEGG_RENIN_ANGIOTENSIN_SYSTEM for Anaerostipes (FDR 
P = 3.16 ×  10–2). Literature search results showed 12 genes prioritized by TWAS were associated with 12 diseases. For 
instance, SFTPD for an unclassified genus of Proteobacteria was related to atherosclerosis, and FUT2 for Bifidobacterium 
was associated with Crohn’s disease.

Conclusions: Our study results provided novel insights for understanding the genetic mechanism of gut microbiota, 
and attempted to provide clues for revealing the influence of genetic factors on gut microbiota for the occurrence 
and development of diseases.
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Background
Gut microbiota is an enormous and complex ecosystem, 
which is closely associated with the host by affecting 
metabolism, immunity and other physiological functions 

[1, 2]. Numerous studies have suggested that the correla-
tion of gut microbiota with the incidence of complex dis-
eases. A case–control study showed the microbial pattern 
of women with breast cancer is different from healthy 
women in terms of bacterial type, relative abundance and 
function [3]. A cohort study of Indian Children found 
that the proportion of Firmicutes in Autistic Spectrum 
Disorder (ASD) children was higher than healthy chil-
dren [4]. In addition, the gut microbiota might involve 
in modulation of body mass index and blood lipid level 
according to the LifeLines-DEEP population cohort study 
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which consists of 893 subjects [5]. However, the mecha-
nism of a large part of diseases induced by gut microbiota 
is still unclear, needing further research to elucidate.

The composition of the gut microbiota is shaped by 
multiple factors including environment, diet, medica-
tion as well as internal parameters [6]. In recent decades, 
great deal of evidence has indicated that host genetic fac-
tor plays indispensable role in shaping the gut microbial 
communities. Lim et  al. found monozygotic twin pairs 
had more similar gut microbial communities compared 
with other family members, and 50 gut microbial taxa 
(58.8%) showed significant heritability among the 85 
taxa identified with heritability estimates valued ranging 
between 13.1% and 45.7% [7]. Additionally, based on a 
large (n = 645) mouse advanced intercross line, microbial 
quantitative trait loci (mbQTLs) could significantly affect 
gut microbial taxa [8]. Moreover, microbial genome-wide 
association analysis (mGWAS) has been conducted in 
recent years to reveal loci related to the gut microbiota. 
According to a previous study, Lactococcus bacteria could 
be affected by single nucleotide polymorphism (SNP) 
rs2294239 in ZNRF3 gene, which is associated with body 
fat distribution [9].

The gut microbiota can be regarded as a trait affected 
by genetic factors [8]. Although GWAS has contributed 
to a great number of genetic clues related to complex dis-
eases and traits, it has limitation in explaining how the 
genetic variations regulate gene expression alone because 
the SNPs identified mainly located in non-coding regions 
[10]. In recent years, expression quantitative trait loci 
(eQTLs) have been widely used to elucidate the influence 
of genetic variants at gene expression level [11]. Subse-
quently, integrated analysis of GWAS and eQTLs became 
practical in exploring the effect of gene expression on 
complex traits [12]. One such family of methods is tran-
scriptome-wide association study (TWAS), which was 
conducted to impute expression from genetic data, show-
ing great power to prioritize candidate genes of com-
plex traits interested, and has been used to identify the 
associations between many diseases and genes [13]. For 
example, Liao et  al. identified KAT2B and TMEM161B 
as causal genes for attention deficit hyperactivity disor-
der by TWAS [14]. Another TWAS detected 25 genes, 
including CELA3B, whose predictive expression was sta-
tistically significantly associated with pancreatic cancer 
risk [15]. To the best of our knowledge, no TWAS was 
applied in gut microbiota study until now.

In this study, we performed TWAS analysis and fine 
mapping of gut microbiota for multiple tissues by lever-
aging expression imputation from large-scale GWAS data 
sets. Subsequently, functional analysis was conducted for 
exploration of the biological functions and pathways of 
significant gene sets. Furthermore, we sorted out diseases 

associated with gut microbiota candidate genes by manu-
ally reviewing the literature.

Methods
mGWAS of gut microbiota
The human microbiota GWAS summary data were 
obtained from a study published by Hughes et  al. [16]. 
The study projects consisted of 2223 individuals from 
the Flemish Gut Flora Project (FGFP) cohort. DNA was 
extracted from frozen fecal samples and used for 16S 
ribosomal RNA gene sequencing subsequently. Among 
499 taxon-derived abundances in FGFP, 92 taxa met the 
analysis criteria, which were identified independent phe-
notypes. The presence/absence (P/A) phenotype (binary) 
and the zero-truncated (all zero values set as missing) 
abundance (AB) phenotype (continuous) were generated 
for taxa where > 5% of individuals in FGFP had an abun-
dance measurement of zero. The genome-wide genotyp-
ing of FGFP was conducted using either the Human Core 
Exome v.1.0 array or the Human Core Exome v.1.1 array. 
Snptest.2.5.0 was used for association analysis. In brief, 
157 microbial traits, including 62 presence/absence (P/A-
HB) and 95 in abundance (AB-RNT) microbial pheno-
types were included in the subsequent analysis. Detailed 
information on subjects, study design, statistical analysis 
and quality control can be found in the publication [16].

TWAS of gut microbiota
TWAS of gut microbiota was performed by FUSION 
software, which precomputed the gene expression 
weights of various tissues using a small set of individu-
als with both gene expression and genotype data. The 
cis-genetic component of expression was then imputed 
into much larger sets of phenotyped individuals accord-
ing to SNP genotype data. In this study, we used Bayes-
ian Sparse Linear Mixed Model (BSLMM) to calculate 
the SNP expression weight of a gene’s 1-Mb cis loci 
[17]. Let w denotes the weights. Z denotes the scores 
of gut microbiota. L denotes the SNP-correlation 
matrix. The association testing statistics between pre-
dicted gene expression and each taxon was calculated 
as ZTWAS = w′Z/

(

w
′
Lw

)

1/2 . The imputed expression 
data can be regarded as a linear model of genotypes with 
weights based on the correlation between gene expres-
sion and SNPs in the training data, linkage disequilib-
rium (LD) among SNPs was considered [13]. Finally, 
the association between target traits and the expression 
level of genes was estimated by integrating analysis of 
mGWAS summary data with gene expression weights. 
The precomputed expression weights of tissues derived 
from the genotype-Tissue expression (GTEx) project 
were downloaded from FUSION websites (http:// gusev 
lab. org/ proje cts/ fusion/). Specific in this study, we used 

http://gusevlab.org/projects/fusion/
http://gusevlab.org/projects/fusion/
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the sigmoid colon and transverse colon as reference pan-
els. Following the recommendation in FUSION software 
[13], we generated the cleaned mGWAS summary statis-
tics data by leverage LD reference panel for further analy-
ses, and the mGWAS summary statistics have not been 
trimmed or thresholded before. The percentage of SNPs 
in the LD reference available in the FGFP mGWAS data 
was approximately 13.8% for each microbial trait. We 
implemented 2000 permutation tests for each FUSION 
analysis to reduce the inflation of by-chance QTL co-
localization. In this study, the analytical permutation P 
value (PPERM.ANL) < 0.05 were considered to be significant.

TWAS fine mapping
Fine-mapping of causal gene sets (FOCUS) approach was 
performed for prioritizing genes with strong evidence 
for causality in TWAS analyses [18]. FOCUS integrates 
GWAS summary data and expression prediction weights 
estimated from the eQTL reference panel, considering 
the LD of all SNPs in the risk region, and finally estimates 
the probability (probability estimates of causality, PIP) 
of any given gene set to explain the TWAS signal [18] 
for each gene. The gene included in 90%-credible set is 
more likely to be causal than any other gene in the region. 
Consistently with TWAS analyses, the transverse  colon 
and sigmoid  colon were used as the reference panels in 
FOCUS analysis. The threshold for screening of mGWAS 
summary data was 1 ×  10–5 [16].

Functional analyses
The gut microbiota related genes identified by TWAS 
(PPERM.ANL < 0.05) were used for functional analyses by 
Functional Mapping and Annotation (FUMA) online 
platform [19]. P values were calculated by FUMA for 
each Gene Ontology (GO) term and pathway. The FDR P 
value < 0.05 was considered as significant.

Verification of gene and disease association
The literature mining was performed to show the lists of 
diseases related to the genes. The PubMed (https:// pub-
med. ncbi. nlm. nih. gov/) was searched to identify whether 
the significant genes of each taxon identified by TWAS 
were the causal gene of the target diseases.

Results
TWAS results
In total, the TWAS of 157 microbial traits were per-
formed by FUSION. In presence/absence (P/A-HB) 
phenotype, 1693 genes were identified by TWAS for 
overall 62 microbial traits (Additional file  1: Table  S1, 
Additional file  2: Table  S2, Additional file  3: Table  S3), 
such as TOB2P1 for Enterococcaceae in sigmoid  colon 
(PPERM.ANL = 1.94 ×  10–50), KCNIP3 for Veillonellaceae 

in transverse colon (PPERM.ANL = 8.35 ×  10–33), WDR6 for 
Coprococcus in sigmoid  colon (PPERM.ANL = 1.1 ×  10–16). 
Accordingly, 2247 genes were detected for 95 micro-
bial traits in abundance (AB-RNT) phenotype, such 
as WDR6 for Butyrivibrio in sigmoid  colon (PPERM.ANL  
= 1.24 ×  10–64), FBXO41 for Clostridium XlVa in trans-
verse  colon (PPERM.ANL = 1.47 ×  10–21), CENPE for Veil-
lonellaceae in sigmoid  colon (PPERM.ANL = 2.30 ×  10–17). 
Table 1 summarizes the top 20 significant genes associ-
ated with microbiota in two phenotypes, respectively.

We summarized overlapped candidate genes for dif-
ferent microbial traits (Fig. 1, Additional file 4: Table S4), 
such as NDUFV3 for Lentisphaerae (HB), Bacteroidales 
(HB), Prevotella (HB), an unclassified genus of order 
Clostridiales (RNT), an unclassified genus of family 
Ruminococcacea (RNT), Victivallis (HB), Bacteroides 
(RNT), Sporobacter (RNT), an unclassified genus of phy-
lum Bacteroidetes (HB), Chao diversity (RNT) and the 
number of genera observed (RNT); and SFTPD gene for 
Rhodospirillaceae (HB), Alphaproteobacteria (HB), an 
unclassified genus of phylum Proteobacteria (HB), Rho-
dospirillales (HB) and an unclassified genus of family 
Rhodospirillaceae (HB). Table 2 shows top 6 genes with 
the most repeats for microbial traits.

Fine mapping results
We performed fine mapping by FOCUS for 157 micro-
bial traits with two reference panels, and finally found 11 
genes included in 90%-credible sets, indicating the genes 
may causally associated with microbial traits (Table  3). 
Among them, 3 genes have been identified in TWAS 
analyses: HELLS for Streptococcus (RNT) (PIP = 0.685) 
in sigmoid  colon, HELLS for Streptococcaceae (RNT) 
(PIP = 0.665) in sigmoid  colon, ANO7 for Erysipel-
otrichaceae (RNT) (PIP = 0.449) in sigmoid  colon, and 
STAG3L4 for Lachnospiraceae (RNT) (PIP = 0.171) in 
transverse colon.

Functional analyses results
The significant genes identified by TWAS for each micro-
bial trait in the two tissues were subjected to functional 
analysis (Additional file 7: Table S7). Totally, we detected 
94 GO terms in two phenotypes. For instance, GO_
NUCLEOSIDE_DIPHOSPHATASE_ACTIVITY was 
significant for Butyrivibrio (RNT) (FDR P = 1.30 ×  10–4), 
GO_CONDENSED_CHROMOSOME_CEN TRO-
MERIC_REGION was significantly associated with 
Acidaminococcus (HB) (FDR P = 1.17 ×  10–3), GO_
SPECTRIN_BINDING was detected to be correlated 
with Burkholderiales (RNT) (FDR P = 1.69 ×  10–3), and 
GO_VACUOLE was associated with Enterobacteriaceae 
(RNT) (FDR P = 2.84 ×  10–3).

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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FUMA also identified 11 pathways related to microbial 
traits, such as KEGG_RENIN_ANGIOTENSIN_SYS-
TEM for Anaerostipes (RNT) (FDR P = 3.16 ×  10–2), 

KEGG_PURINE_METABOLISM for Veillonellaceae 
(HB) (FDR P = 7.35 ×  10–3), KEGG_JAK_STAT_SIGN-
ALING_PATHWAY for Enterococcaceae (RNT) (FDR 

Table 1 Top 20 candidate genes detected by TWAS in P/A and AB models

Gene Tissue Microbiota trait Z P

P/A-HB phenotype

 DNAJC9-AS1 Transverse colon G_Ruminococcus − 2.28 4.66 ×  10–154

 CCDC36 Sigmoid colon F_Enterococcaceae − 2.22 6.46 ×  10–130

 RP11-804H8.6 Sigmoid colon F_Enterobacteriaceae 2.02 1.19 ×  10–55

 TOB2P1 Sigmoid colon F_Enterococcaceae 2.02 1.94 ×  10–50

 ARHGAP1 Transverse colon C_Gammaproteobacteria 1.96 4.85 ×  10–44

 RP11-697N18.3 Transverse colon F_Peptostreptococcaceae 2.54 3.91 ×  10–33

 KCNIP3 Transverse colon F_Veillonellaceae 1.97 8.35 ×  10–33

 C3orf18 Sigmoid colon C_Deltaproteobacteria − 2.34 3.61 ×  10–27

 C3orf18 Sigmoid colon F_Enterobacteriaceae − 2.07 5.68 ×  10–22

 AC011330.5 Sigmoid colon G_Clostridium_sensu_stricto − 2.19 3.47 ×  10–21

 RNF138P1 Sigmoid colon G_Gemmiger 2.029 1.56 ×  10–19

 ARIH2 Transverse colon G_Coprococcus 2.57 3.39 ×  10–18

 ELMO3 Transverse colon G_Collinsella − 2.33 1.02 ×  10–16

 RP11-344N10.5 Sigmoid colon G_Bifidobacterium − 2.04 1.09 ×  10–16

 WDR6 Sigmoid colon G_Coprococcus − 2.07 1.10 ×  10–16

 CYP1A1 Transverse colon G_Paraprevotella 2.30 2.60 ×  10–15

 PROM2 Sigmoid colon G_F_Coriobacteriaceae 2.65 1.74 ×  10–13

 CYP1A1 Transverse colon G_F_Porphyromonadaceae 2.28 9.01 ×  10–13

 FBXO41 Transverse colon G_Lactococcus − 2.44 4.30 ×  10–12

 PROM2 Sigmoid colon G_F_Rhodospirillaceae 2.07 3.46 ×  10–11

AB-RNT phenotype

 RP3-462E2.5 Transverse colon G_Sporobacter 2.243 3.53 ×  10–98

 WDR6 Sigmoid colon G_Butyrivibrio 2.50 1.24 ×  10–64

 ARIH2 Transverse colon G_P_Proteobacteria − 3.33 2.18 ×  10–63

 TOB2P1 Sigmoid colon G_Ruminococcus2 2.01 2.72 ×  10–29

 IGKV6-21 Transverse colon G_Collinsella 2.16 3.56 ×  10–26

 C3orf18 Transverse colon F_Enterobacteriaceae − 2.77 3.09 ×  10–24

 C3orf18 Sigmoid colon C_Gammaproteobacteria − 2.00 4.03 ×  10–22

 FBXO41 Transverse colon G_Clostridium_XlVa − 2.60 1.47 ×  10–21

 IGKV6-21 Transverse colon G_P_Bacteroidetes − 2.16 3.58 ×  10–21

 RP11-10C24.3 Sigmoid colon G_Sutterella 2.97 1.07 ×  10–19

 C3orf18 Transverse colon C_Gammaproteobacteria − 2.14 7.08 ×  10–19

 ZNF33A Transverse colon G_P_Bacteroidetes 2.50 8.09 ×  10–19

 SLC33A1 Sigmoid colon G_Sutterella − 2.28 1.10 ×  10–17

 DNAJB12 Transverse colon P_Proteobacteria 2.59 1.19 ×  10–17

 CENPE Sigmoid colon F_Veillonellaceae 2.20 2.30 ×  10–17

 MUTYH Transverse colon G_Prevotella − 2.39 2.74 ×  10–17

 RP11-365H22.2 Transverse colon O_Burkholderiales 2.08 3.75 ×  10–16

 SIL1 Transverse colon G_Streptococcus 2.31 1.10 ×  10–15

 GINM1 Sigmoid colon G_F_Lachnospiraceae 2.50 2.80 ×  10–15

 RP11-365H22.2 Transverse colon G_P_Firmicutes 1.97 2.26 ×  10–14



Page 5 of 12Pan et al. Gut Pathogens           (2021) 13:74  

Fi
g.

 1
 T

op
 1

4 
ov

er
la

pp
ed

 c
an

di
da

te
 g

en
es

 w
ith

 th
e 

m
os

t r
ep

et
iti

on
s 

in
 a

ll 
m

ic
ro

bi
al

 tr
ai

ts
. C

irc
os

 s
ho

w
s 

th
e 

to
p 

14
 c

an
di

da
te

 g
en

es
 w

ith
 th

e 
m

os
t r

ep
ea

ts
 o

f a
ll 

gu
t m

ic
ro

bi
ot

a 
in

 tr
an

sv
er

se
 c

ol
on

 
an

d 
si

gm
oi

d 
co

lo
n.

 T
he

 a
ss

oc
ia

tio
ns

 fo
r e

ac
h 

O
TU

 w
ith

 m
ul

tip
le

 g
en

es
 a

re
 a

ls
o 

ex
hi

bi
te

d.
 T

he
 la

be
ls

 o
n 

th
e 

le
ft

 o
f t

he
 fi

gu
re

 re
pr

es
en

t g
en

e 
na

m
es

, a
nd

 th
e 

la
be

ls
 o

n 
th

e 
rig

ht
 a

re
 s

or
te

d 
al

ph
ab

et
ic

al
ly

, r
ep

re
se

nt
in

g 
di

ffe
re

nt
 O

TU
s



Page 6 of 12Pan et al. Gut Pathogens           (2021) 13:74 

Table 2 Top 6 overlapped candidate genes for different microbial traits

Gene Tissue Microbial trait Z P

NDUFV3 Sigmoid colon P_Lentisphaerae_HB 3.61 1.35 ×  10–3

Sigmoid colon Div_NumberGenera_RNT 3.52 1.58 ×  10–3

Sigmoid colon G_O_Bacteroidales_HB 3.45 1.96 ×  10–3

Sigmoid colon G_Prevotella_HB 3.25 1.99 ×  10–3

Sigmoid colon G_O_Clostridiales_RNT 3.33 2.01 ×  10–3

Sigmoid colon Div_Chao1_RNT 3.18 2.48 ×  10–3

Transverse colon P_Lentisphaerae_HB 3.41 2.51 ×  10–3

Transverse colon G_O_Clostridiales_RNT 3.20 3.19 ×  10–3

Sigmoid colon G_F_Ruminococcaceae_RNT 3.35 3.65 ×  10–3

Sigmoid colon G_Victivallis_HB 3.08 4.37 ×  10–3

Transverse colon G_O_Bacteroidales_HB 2.98 4.64 ×  10–3

Sigmoid colon G_Bacteroides_RNT − 3.22 5.11 ×  10–3

Transverse colon G_Bacteroides_RNT − 3.30 6.08 ×  10–3

Sigmoid colon G_Sporobacter_RNT 3.26 1.01 ×  10–2

Sigmoid colon G_P_Bacteroidetes_HB 2.85 1.14 ×  10–2

SH3PXD2B Sigmoid colon Div_Shannon_RNT − 4.04 1.26 ×  10–3

Sigmoid colon Div_Chao1_RNT − 3.54 1.44 ×  10–3

Sigmoid colon G_F_Ruminococcaceae_RNT − 3.49 1.60 ×  10–3

Sigmoid colon F_Desulfovibrionaceae_RNT − 3.54 1.87 ×  10–3

Sigmoid colon F_Porphyromonadaceae_RNT − 4.02 2.04 ×  10–3

Sigmoid colon Div_NumberGenera_RNT − 3.46 2.58 ×  10–3

Sigmoid colon G_Desulfovibrio_HB − 3.42 2.64 ×  10–3

Sigmoid colon C_Deltaproteobacteria_HB − 3.16 3.33 ×  10–3

Sigmoid colon G_O_Clostridiales_RNT − 3.55 4.15 ×  10–3

Sigmoid colon G_Barnesiella_HB − 3.50 4.77 ×  10–3

Sigmoid colon P_Lentisphaerae_HB − 3.47 5.03 ×  10–3

Sigmoid colon G_Oscillibacter_RNT − 3.72 6.04 ×  10–3

RP3-388E23.2 Transverse colon G_Butyrivibrio_HB 3.93 3.46 ×  10–5

Transverse colon Div_Shannon_RNT 3.43 4.13 ×  10–4

Transverse colon G_O_Clostridiales_RNT 2.70 1.33 ×  10–3

Transverse colon G_Clostridium_sensu_RNT 2.71 2.73 ×  10–3

Transverse colon G_F_Ruminococcaceae_RNT 2.72 2.94 ×  10–3

Sigmoid colon G_F_Ruminococcaceae_RNT 2.61 5.84 ×  10–3

Sigmoid colon G_F_Porphyromonadaceae_RNT 2.56 7.77 ×  10–3

Sigmoid colon G_Dorea_RNT 2.06 1.04 ×  10–2

Transverse colon G_P_Proteobacteria_HB 2.43 1.21 ×  10–2

Sigmoid colon G_Intestinibacter_HB 2.08 1.98 ×  10–2

Transverse colon G_Oscillibacter_RNT 2.22 2.44 ×  10–2

CYP3A7 Transverse colon G_Bacteroides_RNT − 2.46 6.27 ×  10–6

Transverse colon G_P_Proteobacteria_HB 2.28 7.96 ×  10–6

Transverse colon G_Methanobrevibacter_HB 2.31 3.04 ×  10–5

Transverse colon Div_Chao1_RNT 2.76 3.29 ×  10–5

Transverse colon Div_NumberGenera_RNT 2.48 1.59 ×  10–4

Transverse colon O_Burkholderiales_RNT 2.60 2.94 ×  10–4

Transverse colon G_Victivallis_RNT 2.26 4.90 ×  10–4

Transverse colon Div_Shannon_RNT 2.45 6.20 ×  10–4

Transverse colon G_Gemmiger_HB 2.68 6.51 ×  10–4

Transverse colon G_Methanobrevibacter_HB 2.19 9.41 ×  10–4
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P = 2.60 ×  10–2). Table 4 shows the top 10 gene ontology 
terms and KEGG pathways of the significant genes.

Association between candidate genes and diseases
The selected top genes in Tables 1 and 2 were searched 
on PubMed website to explore the possible relationship 

with diseases, and 12 genes were found to be associ-
ated with 12 diseases (Table 5). For instance, HELLS for 
Streptococcus in sigmoid colon was related to colorec-
tal cancer [20], and SFTPD for an unclassified genus of 
Proteobacteria in transverse colon  was detected to be 
related to atherosclerosis [21]. Specifically, although 

Table 2 (continued)

Gene Tissue Microbial trait Z P

WDR5B Sigmoid colon F_Veillonellaceae_HB − 3.20 4.99 ×  10–4

Transverse colon G_F_Porphyromonadaceae_RNT 3.31 2.00 ×  10–3

Sigmoid colon G_F_Porphyromonadaceae_RNT 3.35 2.05 ×  10–3

Sigmoid colon O_Rhodospirillales_HB 3.20 3.45 ×  10–3

Sigmoid colon G_O_Clostridiales_RNT 2.37 3.57 ×  10–3

Sigmoid colon C_Alphaproteobacteria_HB 3.37 3.91 ×  10–3

Sigmoid colon G_P_Proteobacteria_RNT − 2.51 4.66 ×  10–3

Transverse colon F_Acidaminococcaceae_RNT − 2.49 4.75 ×  10–3

Sigmoid colon F_Rhodospirillaceae_HB 2.97 4.80 ×  10–3

Sigmoid colon G_F_Rhodospirillaceae_HB 2.76 6.18 ×  10–3

DFNB59 Sigmoid colon G_F_Porphyromonadaceae_HB − 3.67 7.08 ×  10–5

Sigmoid colon G_Akkermansia_HB − 2.64 6.56 ×  10–4

Sigmoid colon F_Desulfovibrionaceae_RNT − 3.30 8.33 ×  10–4

Sigmoid colon G_Oscillibacter_RNT − 3.87 8.78 ×  10–4

Sigmoid colon G_Victivallis_HB − 2.99 1.42 ×  10–3

Sigmoid colon G_O_Clostridiales_RNT − 3.13 1.97 ×  10–3

Sigmoid colon G_F_Coriobacteriaceae_HB − 2.99 2.54 ×  10–3

Sigmoid colon G_Alistipes_RNT − 2.85 2.91 ×  10–3

Sigmoid colon G_Eisenbergiella_HB − 2.12 3.39 ×  10–3

Table 3 Potentially causal genes for microbial traits detected by FOCUS

The integral fine mapping results are shown in Additional file 5, 6: Table S5–S6

Gene Chrom Microbial trait Reference panel PIP Identified 
by TWAS

METTL15P1 3 G_Faecalitalea_RNT Sigmoid colon 0.821 NO

COL5A1-AS1 9 G_Parasutterella_RNT Sigmoid colon 0.801 NO

RP1-257A7.4 6 G_Veillonella_RNT Sigmoid colon 0.714 NO

HELLS 10 G_Streptococcus_RNT Sigmoid colon 0.685 YES

HELLS 10 F_Streptococcaceae_RNT Sigmoid colon 0.665 YES

FBXO27 19 G_Aestuariispira_RNT Sigmoid colon 0.555 NO

NIPSNAP1 22 G_Clostridium_sensu_RNT Sigmoid colon 0.537 NO

ANO7 2 F_Erysipelotrichaceae_RNT Sigmoid colon 0.449 YES

FRRS1L 9 G_P_Firmicutes_RNT Transverse colon 0.826 NO

RP11-1277A3.2 5 G_Intestinibacter_RNT Transverse colon 0.114 NO

STAG3L4 7 G_Lachnospiraceae_RNT Transverse colon 0.171 YES

CPNE8 12 G_F_Porphyromonadaceae_RNT Transverse colon 0.201 NO
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not included in the top genes, FUT2 for Bifidobacte-
rium was suggested to be the causal gene for Crohn’s 
disease (CD) in previous study [22].

Discussion
Host genes have been shown to be closely related to the 
ecosystem of the gut microbiota. Previous studies have 

Table 4 Top 10 significant GO and KEGG pathways for microbial traits

The integral functional analyses results are shown in Additional file 7: Table S7

GeneSet Microbial trait FDR P

GO term

 GO_NUCLEOSIDE_DIPHOSPHATASE_ACTIVITY G_Butyrivibrio_RNT 1.30 ×  10–4

 GO_CONDENSED_CHROMOSOME_CENTROMERIC_REGION G_Acidaminococcus_HB 1.17 ×  10–3

 GO_KINETOCHORE G_Acidaminococcus_HB 1.17 ×  10–3

 GO_CHROMOSOMAL_REGION G_Acidaminococcus_HB 1.39 ×  10–3

 GO_SPECTRIN_BINDING O_Burkholderiales_RNT 1.69 ×  10–3

 GO_CHROMOSOME_CENTROMERIC_REGION G_Acidaminococcus_HB 2.55 ×  10–3

 GO_VACUOLE F_Enterobacteriaceae_RNT 2.84 ×  10–3

 GO_OXIDOREDUCTASE_ACTIVITY_AC
TING_ON_PAIRED_DONORS_WITH_INCORPORATION
_OR_REDUCTION_OF_MOLECULAR_OXYGEN_REDUCED
_FLAVIN_OR_FLAVOPROTEIN_AS_ONE_DONOR_AND
_INCORPORATION_OF_ONE_ATOM_OF_OXYGEN

G_unclassified_F_Porphyromonadaceae_HB 3.62 ×  10–3

 GO_STEROID_HYDROXYLASE_ACTIVITY G_unclassified_F_Porphyromonadaceae_HB 3.62 ×  10–3

 GO_CONDENSED_CHROMOSOME G_unclassified_F_Porphyromonadaceae_HB 3.73 ×  10–3

KEGG pathway

 KEGG_RETINOL_METABOLISM G_unclassified_F_Porphyromonadaceae_HB 3.35 ×  10–3

 KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 G_unclassified_F_Porphyromonadaceae_HB 3.35 ×  10–3

 KEGG_PURINE_METABOLISM F_Veillonellaceae_HB 7.35 ×  10–3

 KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 Div_Shannon_RNT 7.36 ×  10–3

 KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS O_Selenomonadales_RNT 1.28 ×  10–2

 KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION F_Desulfovibrionaceae_RNT 1.48 ×  10–2

 KEGG_PYRIMIDINE_METABOLISM F_Veillonellaceae_HB 2.07 ×  10–2

 KEGG_JAK_STAT_SIGNALING_PATHWAY F_Enterococcaceae_RNT 2.60 ×  10–2

 KEGG_LYSOSOME F_Enterobacteriaceae_RNT 2.81 ×  10–2

 KEGG_RENIN_ANGIOTENSIN_SYSTEM G_Anaerostipes_RNT 3.16 ×  10–2

Table 5 The list of candidate genes associated with diseases

Gene Microbial trait Reference panel Gene-related disease Reference

NDUFV3 Div_Chao1_RNT Sigmoid colon Down syndrome PMID: 26848775

ARIH2 G_Coprococcus_HB Transverse colon Parkinson’s disease PMID: 31284572

ZNF33A G_P_Bacteroidetes_RNT Transverse colon Major depressive disorder PMID: 32554045

ARHGAP1 C_Gammaproteobacteria_HB Transverse colon Ischemic heart disease PMID: 31664016

CYP3A7 Div_Chao1_RNT Transverse colon Bilirubin metabolic disorder PMID: 32499339

SFTPD G_P_Proteobacteria_RNT Transverse colon Atherosclerosis PMID: 26748346

LSG1 G_Streptococcus_RNT Sigmoid colon Attention-deficit hyperactivity disorder PMID: 30738099

SH3PXD2B F_Porphyromonadaceae_RNT Sigmoid colon Osteoporosis PMID: 30962481

FUT2 G_Bifidobacterium_HB Transverse colon Crohn’s disease PMID: 31260595

PKD1L2 G_Alloprevotella_RNT Transverse colon Colorectal cancer PMID: 27605020

HELLS G_Streptococcus_RNT Sigmoid colon Colorectal cancer PMID: 32063710

ANO7 F_Erysipelotrichaceae_RNT Sigmoid colon Prostate cancer PMID: 30157291
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detected multiple candidate genes associated with spe-
cific taxa [23–25]. Recent studies indicated that non-
coding regulatory regions play an important role in 
influencing human complex traits. The gut microbiota 
was once suggested as a complex trait of the host affected 
by mbQTL [8], so we speculate that the host can influ-
ence the composition of the gut microbiota and the abun-
dance of specific groups by regulating gene expression. In 
this study, TWAS was performed to prioritize candidate 
genes affecting gut microbiota at gene expression level 
by integrating GWAS summary data and specific pre-
computed tissue expression profile. Finally, we identi-
fied numbers of genes and pathways related to microbial 
traits, and some of the genes have been reported to be 
associated with specific diseases by previous studies.

TWAS and fine mapping both prioritized several candi-
date genes for gut microbiota, such as HELLS for Strepto-
coccus in sigmoid colon, ANO7 for Erysipelotrichaceae in 
sigmoid colon. We attempted to explore the relationship 
between gut microbiota candidate genes and diseases. 
HELLS encodes lymphoid specific, which participates in 
the establishment and maintenance of DNA methylation 
with chromatin remodeling through its ATPase activity 
[20]. HELLS expression was proved to be significantly 
associated with the colorectal cancer progression and 
a higher pathological grade [20]. Aberrant bands of the 
HELLS was observed in seven colorectal cancers by poly-
merase chain reaction-based single strand conformation 
polymorphism assay [26]. Streptococcus has been identi-
fied as colorectal cancer candidate pathogens in previous 
researches [27, 28]. ANO7 has been found to play a cen-
tral role in prostate cancer progression, and its elevated 
expression correlates with disease severity and outcome 
[29]. Notably, the abundance of Erysipelotrichaceae was 
observed to be increased in prostate cancer patients [30]. 
In the treatment of prostate cancer by androgen axis tar-
geted therapy, men receiving the treatment showed a sig-
nificant decrease in the abundance of sequencing reads 
assigned to Erysipelotrichaceae [31]. In gut microbiota 
of mice, the abundance of Erysipelotrichaceae was also 
different between cancer bearing mice and healthy mice 
[32].

FUT2 was detected to be associated with Bifidobacte-
rium in transverse colon in TWAS. FUT2 gene encodes 
α-1, 2-fucosyltransferase for the expression of ABH blood 
group antigens on mucosal surfaces, and determines the 
ability to secrete blood group antigens into gastrointes-
tinal secretions. Individuals who have homozygous non-
coding variants in FUT2 are nonsecretors, and ABH 
antigens are not expressed in mucosal secretions and sur-
faces, generally called as sese [33, 34]. Accordingly, secre-
tory type was expressed as SeSe and Sese [34].

The alterations of FUT2 genotype resulted in a sig-
nificant shift of microbial composition, that is, the gar-
dening effect of FUT2 polymorphism on phylogenetic 
composition of the gut microbiota [34]. Present studies 
consistently show the genome-wide significant asso-
ciation between FUT2 non-secretor allele and CD in 
various races [22, 35]. It is suggested that FUT2 gene 
loss-of-function allele homozygotes change the gut 
microbiota of CD patients [36–39]. FUT2 polymorphism 
may also partly contribute to CD susceptibility by shap-
ing community composition and structure of microbiota 
[36, 37]. Previous studies showed genus Bifidobacterium 
had higher diversity, richness and abundance in secre-
tors compared with non-secretors [40, 41]. Moreover, 
increased genus Bifidobacterium is related to success-
ful clinical outcome or remission of therapy in CD [42]. 
Further studies are warranted to identify the interactions 
between FUT2, Bifidobacterium and CD.

TWAS also identified SFTPD as a candidate gene for an 
unclassified genus of Proteobacteria in transverse colon. 
SFTPD encodes surfactant protein D, which is an impor-
tant host defense lectin. It aggregates and enhances 
phagocytosis of microbes and dying host cells [43]. 
SFTPD is mainly expressed in lung, but also distributes 
in gallbladder and gut, and could shape intestinal micro-
bial ecosystem [43]. Some potential evidence has carried 
out the link between SFTPD and phylum Proteobacteria. 
Nexoe et al., found a strong positive correlation between 
inflammatory activity and expression of SFTPD in the 
intestinal epithelium from Inflammatory Bowel Disease 
(IBD) patients [44], while the increase of Proteobacteria 
is one of the most consistent observations in IBD indi-
viduals [45].

SFTPD was reported exacerbating the development 
of atherosclerosis in previous literatures [21, 46–48]. In 
recent decades, bacterial infections and chronic inflam-
mation have become possible causes of cardiovascular 
disease. Atherosclerosis is a chronic inflammatory pro-
cess driven by lipids in the walls of the great arteries [49]. 
SFTPD has been proved to play a predominant role in 
pro-inflammatory [50, 51]. According to previous stud-
ies, the genus of Proteobacteria were involved in the for-
mation of atherosclerosis. For instance, Proteus vulgaris 
was found to be present in the plaques and intestines of 
the same individual [52], Proteus mirabilis can interact 
with atherosclerosis plaques in human coronary arter-
ies via specific molecular to exacerbate the progression 
of disease [53]. In addition, the abundance of Proteus in 
the blood of cardiovascular disease patients was observed 
to be increased compared with healthy individuals [52]. 
In mouse disease models, the reduction of phylum 
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Proteobacteria abundance can exert a therapeutic effect 
on atherosclerosis [54]. Since the SFTPD is related to the 
abundance of bacteria from phylum Proteobacteria based 
on our findings, we hypothesized that the microbiota 
could affect susceptibility to atherosclerosis by genetic 
regulation.

KEGG_RENIN_ANGIOTENSIN_SYSTEM was 
detected to be associated with Anaerostipes in functional 
analysis. In a recent study, the fewer abundance of Anaer-
ostipes was observed in primary aldosteronism patients 
than healthy individuals [55]. Bier et  al. have confirmed 
that high salt diet could lead to decreased the abundance 
of taxa from the Anaerostipes genus [56]. Moreover, 
Anaerostipes was found to be correlated with higher esti-
mated glomerular filtration rate in the overall population 
[57].

To the best of our knowledge, we conducted the first 
large-scale comprehensive sigmoid  colon and trans-
verse  colon tissue-specific TWAS for gut microbiota, 
and performed fine mapping based on TWAS for further 
confirmation. The candidate genes for gut microbiota 
were further explored for the link between various taxa 
and diseases. Our study also has three potential limita-
tions. First, only individuals of European ancestry from 
Germany and Belgium were included in the analysis, so 
the results cannot be generalized to other ethnic groups. 
Second, the information about diet and drug use of indi-
viduals is lack so that we can’t rule out the effects of diet 
and medication on the composition of gut microbiota. 
Third, it should be marked that the purpose of this study 
is to screen and prioritize candidate genes for gut micro-
biota, the results should be interpreted with caution. At 
present, research based on the interaction of genes and 
gut microbiota still needs more extensive exploration, 
further functional studies should be performed to con-
firm our findings and elucidate the mechanisms which 
genes act on gut microbiota.

Conclusions
To be conclude, we performed TWAS analyses and 
identified multiple candidate genes and pathways of 
gut microbiota. We found that some candidate genes 
may also involve in the susceptibility of diseases, and 
attempted to provide clues for revealing the influence 
of genetic factors on gut microbiota for the occurrence 
and development of diseases. Our findings may provide 
new insight into the influence of genetic factors on the 
composition of gut microbiota, in addition to suggesting 
the potential role of gut microbiota in the mechanism of 
genetic factors contributing to disease susceptibility. Fur-
ther studies are needed to demonstrate specific biological 
mechanisms in the future.
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