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Abstract 

Background: There is emerging evidence that the gut microbiome composition is associated with several human 
health outcomes, which include cognitive performance. However, only a few prospective epidemiological stud-
ies exist and none among young adults. Here we address the gap in the literature by investigating whether the gut 
microbiome composition is prospectively linked to fluid intelligence among healthy young adults.

Methods: Forty individuals (65% females, 26 years) from the DOrtmund Nutritional and Anthropometric Longitudi-
nally Designed (DONALD) study provided a fecal sample for gut microbiome composition and subsequently (average 
of 166 days) completed a cognitive functioning test using the Cattell’s Culture Fair Intelligence Test, revised Ger-
man version (CFT 20-R). The assessment of the gut microbiome at the genera level was by 16S rRNA V3-V4 Illumina 
sequencing. The relative abundance of 158 genera was summarized into bacterial communities using a novel data-
driven dimension reduction, amalgamation. The fluid intelligence score was regressed on the relative abundance of 
the bacterial communities and adjusted for selected covariates.

Results: The 158 genera were amalgamated into 12 amalgams (bacterial communities), which were composed of 
18, 6, 10, 14, 8, 10, 16, 13, 12, 12, 3, and 11 genera. Only the 14-genera bacterial community, named the “Ruminococ-
caceae- and Coriobacteriaceae-dominant community” was positively associated with fluid intelligence score (β = 7.8; 
95% CI: 0.62, 15.65, P = 0.04).

Conclusion: Among healthy young adults, the abundance of a gut bacterial community was associated with fluid 
intelligence score. This study suggests that cognitive performance may potentially benefit from gut microbiome-
based intervention.

Keywords: Gut microbiome, Relative abundance, Ruminococcaceae, Coriobacteriaceae, Cognitive performance, 
Fluid intelligence, DONALD Study
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Background
It has become increasingly recognized that the gut 
microbiome may play a substantial role in the occur-
rence of many human conditions [1, 2]. More recently, 
the association of the gut microbiome with cognitive 
neurodevelopment and brain functioning has attracted 
much attention [3–7]. This association is attributed to the 
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microbiota-gut-brain-axis [8, 9]. Indeed, epidemiological 
investigations have demonstrated associations between 
the composition of the gut microbiome and prevalent 
neurodegenerative conditions such as Alzheimer’s dis-
ease [10–13] and Parkinson’s disease [12, 14].

In apparently healthy individuals, the association 
between the gut microbiome composition and cognitive 
functioning is also documented [15–24]. However, these 
studies have yielded inconsistent results. These inconsist-
ent results may reflect limitations of the design of these 
studies, which is mainly cross-sectional [15–17, 19–22, 
24]. Therefore, more prospective studies where the gut 
microbiome composition is profiled before the assess-
ment of cognitive performance will help to draw a more 
definite conclusion and contribute to improving our 
knowledge on the influence of the gut microbiome on 
cognitive functioning. Additionally, previous studies have 
been among infants [18, 23], children [24], middle-aged 
adults [20], and older adults [15–17, 19–22]. Considering 
that the cognitive health in young adulthood positively 
correlates with memory and brain functioning in later life 
[25], studies among young adults would be necessary.

Crystallized and fluid cognition (or intelligence) are the 
two cognitive domains [26]. The fluid intelligence is cru-
cial because it is a person’s innate ability to process and 
learn new information, solve problems, and attend to and 
manipulate one’s environment [27]. In fact, it is positively 
associated with better psychological and health outcomes 
throughout adulthood and into old age [28]. Thus, the 
relationship between the gut microbiome and fluid intel-
ligence should be of research interest.

To this end, the present prospective epidemiological 
study sought to investigate whether the gut microbiome 
composition is independently associated with fluid intel-
ligence among young adults.

Results
Description of study population
Table 1 presents the basic characteristics of the 40 indi-
viduals in the current analysis. The median age at the 
time of fecal sampling was 26  years. About two-third 
(65%) were females. The median time between fecal sam-
pling and the assessment of cognitive performance was 
166  days. Furthermore, the birth weight was approxi-
mately 3.5 kg. Their BMI of 23.4 kg/m2 is within the nor-
mal weight range. They had a moderate physical activity 
of approximately 33 MET-hour/week. The median car-
bohydrate intake and alcohol consumption were 199  g/
day and 0.39  g/day, respectively. The median Shannon 
alpha diversity of the gut microbiome was 6.1. Finally, the 
median fluid intelligence score was 110.

Table  2 shows the 133 assigned genera and the 12 
mutually exclusive amalgams to which they were 

assigned. These 12 amalgams were composed of 18, 6, 
10, 14, 8, 10, 16, 13, 12, 12, 3, and 11 genera, respectively. 
They include well-known genera such as Fusobacte-
rium, Lachnoclostridium, Staphylococcus, Akkermansia, 
Bacteroides, Streptococcus, Phascolarctobacterium and 
Desulfovibrio, Enterococcus, Paraprevotella, Blautia, 
Pseudobutyrivibrio, and Dialister, respectively. Twenty-
five genera were not assigned.

The boxplots for the average center log-ratio trans-
formed relative abundance (RA) of all genera in each 
amalgam (Fig.  1) shows that the lowly abundant genera 
were grouped together in one amalgam. The inter-quar-
tile range of ten amalgams being lower than the unas-
signed group also suggests that lowly abundant genera 
were not systematically excluded by amalgamation. 
Further, the fact that the 12 amalgams and the unas-
signed group overlapped with at least one other group 
suggests that none of the groups was different from 
all others. The 12 amalgams were named as follows: 
“Lachnospiraceae-dominant community I", “Lachno-
spiraceae- and Ruminococcaceae-dominant community”, 
“Lachnospiraceae- and Christensenellaceae-dominant 
community”, “Ruminococcaceae- and Coriobacteriaceae-
dominant community”, “Erysipelotrichaceae-dominant 
community I”, “Lachnospiraceae-dominant commu-
nity II”, “Erysipelotrichaceae-dominant community II”, 

Table 1 Basic characteristic of the study population (N = 40)

a n(%)
b Median (25th, 75th percentile)

n = count, % = percentage

N

Sex,  femalesa 40 26 (65)

Age,  yearsb 40 26 (22, 30)

Birth  weightb 40 3480 (3215, 3665)

Body mass index, kg/m2b 40 23.43 (21.08, 25.06)

Physical activity, MET-hour/weekb 40 33.14 (21.72, 51.12)

Energy intake, kcal/dayb 40 1551.3 (1418.96, 1746.72)

Carbohydrate intake, g/dayb 40 198.62 (173.97, 230.34)

Fiber intake, g/dayb 40 14.69 (13.10, 16.63)

Protein intake, g/dayb 40 51.02 (46.87, 56.87)

Fat intake, g/dayb 40 61.17 (55.61, 67.5)

Alcohol consumption, g/dayb 40 0.39 (0.21, 1.1)

Smoking status, current  smokersa 37 6 (16)

Education, ≥ 12 years of  educationa 40 22 (55)

Antibiotics  intakea 33 13 (39)

Probiotics  intakea 33 17 (52)

Time between fecal sampling microbi-
ome and
cognition assessment,  daysb

40 166 (130, 194.5)

Shannon alpha diversity  indexb 40 6.1 (5.86, 6.3)

Fluid intelligence  scoreb 40 110 (100, 119)
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Table 2 The twelve amalgams of the gut microbiome and their description

Amalgams Numbers 
of genera

Genera Description

V1 18 Tyzzerella, Lachnospiraceae FCS020 group, Howardell, Prevotel-
laceae NK3B31 group, Alloprevotella, Coprobacillus, Intestini-
bacter, NB1-n uncultured bacterium, Family XIII AD3011 group, 
Prevotella 7, Uncultured Thermoanaerobacterales bacterium, 
Hafnia, Eubacterium, Bacteroidales S24-7 group uncultured 
organism, Lactobacillus, Fusobacterium, Veillonellaceae uncul-
tured bacterium, Peptococcus

Lachnospiraceae-dominant community I

V2 6 Lachnospiraceae FE2018 group, Lachnoclostridium, Ruminococ-
cus 2, Ruminococcaceae UCG-009, Erysipelotrichaceae UCG-003, 
Defluviitaleaceae UCG-011

Lachnospiraceae- and Ruminococcaceae-dominant com-
munity

V3 10 Lachnospiraceae NC2004 group, Tyzzerella 4, R-7 group, Chris-
tensenellaceae uncultured bacterium, Clostridium sensu stricto 
1, Veillonella, Anaerotruncus, Staphylococcus, Mollicutes RF9 
uncultured bacterium, Pediococcus

Lachnospiraceae- and Christensenellaceae-dominant 
community

V4 14 Ruminiclostridium 5, Ruminococcaceae UCG-010, Coriobac-
teriaceae uncultured bacterium, Slackia, [Eubacterium] hallii 
group, Peptoclostridium, Akkermansia, Lactococcus, Erysip-
elotrichaceae Incertae Sedis, [Eubacterium] nodatum group, 
Prevotellaceae uncultured bacterium, Robiginitalea, Pseu-
domonas, Bacteroidales S24-7 group uncultured bacterium

Ruminococcaceae- and Coriobacteriaceae-dominant 
community

V5 8 Erysipelotrichaceae bacterium 21_3, Erysipelotrichaceae UCG-
004, Bacteroides, Anaerostipes, Clostridiales vadinBB60 group 
uncultured organism, Coprobacter, Megasphaera, boneC3G7 
uncultured bacterium

Erysipelotrichaceae-dominant community I

V6 10 Roseburia, Lachnoclostridium 5, Hungatella, Streptococcus, 
Terrisporobacter, Oscillospira, Uncultured Mollicutes bacterium, 
Acidaminococcus, Haemophilus, Acinetobacter

Lachnospiraceae-dominant community II

V7 16 Turicibacter, Holdemanella, Catenibacterium, Ruminococcaceae 
UCG-002, Flavonifractor, Allisonella, Megamonas, Gastranaer-
ophilale uncultured bacterium, Escherichia-Shigella, Eggerthella, 
Phascolarctobacterium, Clostridiales vadinBB60 group uncultured 
bacterium, Lachnospiraceae uncultured bacterium, Prevotel-
laceae UCG-003, Desulfovibrio, Anaeroplasma

Erysipelotrichaceae-dominant community II

V8 13 Fusicatenibacter, Tyzzerella 3, Eisenbergiella, Ruminococcaceae 
UCG-013, Butyricicoccus, Parasutterella, Sutterella, Erysipelato-
clostridium, Solobacterium, Prevotellaceae UCG-001, Enterococ-
cus, Thalassospira, Enterorhabdus

Lachnospiraceae-dominant community III

V9 12 Intestinimonas, Ruminiclostridium 6, Ruminiclostridium 1, 
Lachnospiraceae NK4A136 group, Lachnospiraceae UCG-001, 
Butyricimonas, Rikenellaceae RC9 gut group, Senegalimassilia, 
Raoultella, NB1-n uncultured organism, Mitsuokella, Paraprevo-
tella

Ruminococcaceae-dominant community I

V10 12 Faecalibacterium, Ruminococcaceae UCG-004, Ruminiclostrid-
ium, Ruminococcaceae UCG-009, Ruminiclostridium 9, Blautia, 
[Eubacterium] ventriosum group, Bilophila, Erysipelotrichaceae 
UCG-003, Defluviitaleaceae UCG-011, Prevotella 9, Collinsella

Ruminococcaceae-dominant community II

V11 3 Pseudobutyrivibrio, [Ruminococcus] gauvreauii group, [Eubacte-
rium] ruminantium group

Lachnospiraceae community

V12 11 Odoribacter, Porphyromonadaceae uncultured, Barnesiella, 
Subdoligranulum, Ruminococcaceae UCG-003, Asteroleplasma, 
Methanobrevibacter, Opitutae vadinHA64 uncultured bacterium, 
Lachnospiraceae UCG-003, Dialister, Alistipes

Porphyromonadaceae-dominant community

V0 25 Lachnospiraceae UCG-004, Lachnospiraceae UCG-005, Lach-
nospiraceae UCG-008, Dorea, Coprococcus 1, Coprococcus 2, 
Lachnospiraceae, uncultured, Lachnospira, Marvinbryantia, Shut-
tleworthia, Ruminococcaceae NK4A214 group, Ruminococcaceae 
UCG-005, Ruminococcaceae UCG-014, [Eubacterium] copros-
tanoligenes group, Ruminococcaceae uncultured bacterium, 
Ruminococcus 1, Rhodococcus, Bifidobacterium, Parabacteroides, 
Faecalitalea, Victivallis, Cloacibacillus, Enterobacter, Prevotella 2, 
Succiniclasticum

Group of unassigned genera
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“Lachnospiraceae-dominant community III”, “Rumino-
coccaceae-dominant community I”, “Ruminococcaceae-
dominant community II”, “Lachnospiraceae community”, 
and “ Porphyromonadaceae-dominant community”. 
Further, among the bacterial communities, there were 
no exceptionally high pairwise correlations with the 
maximum correlation being moderate (|0.5|≤ r ≤|0.7|, 
P < 0.05) and appearing only in eight correlations. The 
Shapiro–Wilk W test for normality (P = 0.51) on fluid 
intelligence score indicated that it has a normal distribu-
tion with constant variance. Thus, fluid intelligence score 
was modelled untransformed.

In the adaptive LASSO, the value of the lambda that 
gives the minimum mean cross-validated error was 
84.48. There were two predictors of fluid intelligence 
score with non-zero coefficients at this value. Figure  2 
displays these two predictors, the “Ruminococcaceae- 
and Coriobacteriaceae-dominant community” and sex, 
with their regularized regression coefficients of 3.86 and 
− 5.38, respectively.

Additionally, the RF-RFE recommends that seven pre-
dictors of fluid intelligence score were optimal when the 
root-mean-square error, R-squared, and the mean abso-
lute error reached their maximum levels at 13.18, 0.07, 
and 10.76, respectively. These seven predictors were 
“Lachnospiraceae-dominant community I”, time between 
fecal sampling and cognitive measurement, alcohol con-
sumption, sex, carbohydrate intake, “Erysipelotrichaceae-
dominant community II”, and “Ruminococcaceae- and 
Coriobacteriaceae-dominant community” with impor-
tance scores of 3.87, 2.7, 2.55, 2.18, 2.16, 1.63, and 1.48, 
respectively (Fig. 3). Thus, the true relevant predictors of 
fluid intelligence score predictors, shared by the adaptive 

Fig. 1 Boxplots for the average center log-ratio transformed relative abundance of each amalgam

Fig. 2 The non-zero predictors of fluid intelligence score obtained 
from the adaptive LASSO regression
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LASSO and RF-RFE, were Ruminococcaceae- and Corio-
bacteriaceae-dominant community and sex.

Regressing fluid intelligence score on “Ruminococ-
caceae- and Coriobacteriaceae-dominant community” 
and sex using the ordinary least squares regression 
showed that “Ruminococcaceae- and Coriobacteriaceae-
dominant community” was positively associated with 
fluid intelligence score (β = 7.8; 95% CI: 0.62, 15.65, 
P = 0.04) and females had lower intelligence score when 
compared to males (β = −  9; 95% CI: −  17.36, −  0.71, 
P = 0.03). The model F statistic was significant (F = 4.05, 
P = 0.03), indicating that the model accounts for a sig-
nificant portion of the variation in the data. The adjusted 
R-squared indicates that these two predictors explained 
approximately 14% of the variation in fluid intelligence 
score.

Discussion
The current prospective epidemiological study among 
young adults investigated whether the gut microbi-
ome composition was independently associated with 
fluid intelligence. Among the 12 bacterial communities 
retrieved from this study population, the “Ruminococ-
caceae- and Coriobacteriaceae-dominant community” 
was positive and independently associated with fluid 
intelligence. This 14-genera community comprises 
Ruminiclostridium 5, Ruminococcaceae UCG-010, 
Coriobacteriaceae uncultured bacterium, Slackia, 

[Eubacterium] hallii group, Peptoclostridium, Akker-
mansia, Lactococcus, Erysipelotrichaceae incertae sedis, 
[Eubacterium] nodatum group, Prevotellaceae uncultured 
bacterium, Robiginitalea, Pseudomonas, and, Bacteroi-
dales S24-7 group uncultured bacterium.

Our finding echoes those of previous epidemiologi-
cal investigations, which reported the relationship of 
Ruminococcaceae and Coriobacteriaceae with cogni-
tive functioning. The abundance of Ruminococcaceae 
was positively associated with good cognition [15, 29]. 
A study with a probiotic supplementation showed that 
an increase in the abundance of a genus in Ruminococ-
caceae resulted in better protection against the negative 
effects of stress on working memory [30]. Furthermore, 
it was reported that the abundance of Coriobacte-
riaceae was positively associated with a better cognitive 
performance [20]. The abundance of Ruminococcaceae 
was reduced in Alzheimer disease [29], multiple sclero-
sis [31] and schizophrenia [32], and the abundance of 
many of its species was reduced in Parkinson’s disease 
[14]. Some of the genera in this community are also 
associated with cognition. The abundance of Erysip-
elotrichaceae incertae sedis and [Eubacterium] hallii 
group were positively associated with cognitive func-
tioning [15] and social cognition [33], respectively. 
Besides, two intervention studies reported that the 
ingestion of multispecies probiotics, which includes 
Lactococcus, was associated with reduced cognitive 

Fig. 3 The seven optimal predictors of fluid intelligence score obtained from the random forest regression with recursive feature elimination
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reactivity to mood disorders [34, 35]. Diet-induced 
increase in the abundance of Akkermansia and Slackia 
was associated with improved Alzheimer’s disease bio-
markers in individuals with mild cognitive impairment 
[36]. There was also a reduced abundance of Slackia 
in multiple sclerosis [37]. The fact that the majority of 
these aforementioned results are in a similar direction 
as ours suggests that our findings are reliable and bio-
logically relevant.

The first potential biological mechanism by which 
the gut microbiome influence cognitive functioning is 
through its stimulation of the afferent neurons of the 
enteric nervous system that communicates with the 
central nervous system via the vagus nerve [9]. In addi-
tion, the gut microbiome possesses the ability to produce 
and modify various immune, metabolic, and neuroac-
tive factors that affect the central nervous system [9]. 
Important neuroactive factors are produced from the 
gut microbiome’s modulation of the dietary protein and 
carbohydrate metabolism [9]. First, Lactococcus [38] and 
Pseudomonas [39] are able to modulate the serotonin 
signaling/metabolism. Akkermansia was predicted to be 
able to produce serotonin [40]. Further, Pseudomonas 
is one of the gamma aminobutyric acid-modifying gen-
era [41] and gamma aminobutyric acid level is lower in 
individuals with Alzheimer’s disease as compared to 
healthy individuals, [42]. Lactococcus produces dopa-
mine [43] and histamine [44, 45] that regulate cognitive 
functions. Akkermansia and [Eubacterium] hallii group 
produce short chain fatty acids (SCFA) from carbohy-
drate metabolism. Akkermansia produces acetate and 
propionate [46], while [Eubacterium] hallii group pro-
duces propionate [2] and butyrate [10]. The production of 
these SCFA generally has a beneficial influence on many 
neurodegenerative conditions [10]. Indeed, systemic 
acetate has the capability to cross the blood–brain bar-
rier where it can activate acetyl-CoA carboxylase leading 
to the enhancement of the expression of neuropeptides 
that induces hypothalamic neuronal activation and sup-
presses appetite [47]. Akkermansia also tend to produce 
indole and indole acetic acid from tryptophan metabo-
lism [39]. The indirect mechanism through inflammation 
implicates Akkermansia and Slackia [48–50]. Akker-
mansia plays a critical role in maintaining the integ-
rity of the mucin layer and reducing inflammation [48]. 
Slackia is an equol producer [49] and equol is crucial 
in maintaining immune homeostasis because it induces 
anti-inflammatory response [50]. The SCFA also act as 
anti-inflammatory mediators [51]. Clearly, these mecha-
nisms may critically interact with one another in complex 
ways. Considering that only a limited number of genera 
in this community has documented potential mechanism 
of action, further work is a needed for insights into how 

the bacteria in this community work together to impact 
cognition.

The two prospective studies, which are both among 
infants, reported that Firmicutes-dominant and Bacte-
roidetes-dominant clusters [23], Bacteroides-dominant 
cluster [18], and Bacteroides [23] were positively asso-
ciated with a favorable cognitive function. The Bacte-
roides-dominant cluster of Carlson et  al. [18] and our 
“Erysipelotrichaceae-dominant community I” both have 
Bacteroides. Thus, they are comparable. The fact that 
the “Erysipelotrichaceae-dominant community I” and 
“Lachnospiraceae-dominant community I” with the high-
est and lowest variance respectively were not associated 
with fluid intelligence suggests that the absence of asso-
ciation of “Erysipelotrichaceae-dominant community I” 
with fluid intelligence is unlikely to be influenced by its 
variation. Therefore, our finding for the “Ruminococ-
caceae- and Coriobacteriaceae-dominant community” 
suggests that the relationship between the gut microbi-
ome composition and cognitive function may be different 
between infants and young adults. Furthermore, between 
three to five genera in the “Ruminococcaceae- and Corio-
bacteriaceae-dominant community” consistently cluster 
together across all the tested number of amalgams. This 
suggests that the membership of this community is not 
arbitrary but highly reproducible and the community 
might indeed represent a relevant biomarker. Further-
more, the bacterial communities retrieved in this study 
are consistent with other studies using different dimen-
sion reduction methods. A study among older German 
adults was also able to recover a Ruminococcaceae-dom-
inated bacterial community and a community includ-
ing the Coriobacteriaceae [52]. The [Eubacterium] hallii 
group and Peptoclostridium in our “Ruminococcaceae- 
and Coriobacteriaceae-dominant community” were also 
among the genera in one of the bacterial communities of 
Leong et al. [53]. Besides, our “Erysipelotrichaceae-dom-
inant community I” and “Ruminococcaceae-dominant 
community II” are somewhat comparable to the Bacte-
roides- and Faecalibacterium-dominant clusters of Carl-
son et al. [18].

A recent study in a different population showed that 
age, sex, education, average food intake, and tyrosine 
intake explained 6% of the variance of fluid intelligence 
[54]. This is lower than the 14% variance of fluid intel-
ligence explained by the abundance of the “Ruminococ-
caceae- and Coriobacteriaceae-dominant community” 
and sex in our study. This finding underscores the impor-
tance of the gut microbiome composition in fluid intel-
ligence. Sex disparity in different aspects of cognitive 
performance is well documented and much debated 
[55–58]. In consort with our findings, studies among 
young adults that assessed fluid intelligence by the CFT 
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20-R [56] and the Wechsler Adult Intelligence Scale [58] 
reported that males have a higher score than females. 
Moreover, considering that our previously reported core 
genera and the carbohydrate intake-related genera [59] 
were not part of this fluid intelligence-associated bacte-
rial community suggests that there might be a minimal 
association between the core gut microbiome and carbo-
hydrate intake-induced changes in the gut microbiome 
abundance in this study population and their cognitive 
performance. Nonetheless, this does not exclude that diet 
or other lifestyle factors may induce changes in the abun-
dance of this gut bacterial community.

There are some limitations of the present study; there-
fore, our findings should be interpreted with a degree 
of caution. This is an observational study; hence, it can-
not provide a definitive conclusion regarding cause and 
effect. Whilst we adjusted for important factors that 
might influence the gut microbiome abundance and 
cognitive performance, unmeasured factors such as 
genetics, socioeconomic status, stool consistency, and 
measures of brain health/brain structure and function 
or imprecisely measured factors could have resulted in 
residual confounding. Furthermore, despite the accept-
able power of this study sample, the confidence inter-
val of our effect estimate is wide. Additionally, we did 
not include interactions between our predictors in our 
statistical model because there is no sufficient prior 
research on specific interactions among the predictors 
with respect to cognition. However, our result suggests 
that sex-specific relationship between the gut micro-
biome abundance and cognitive performance should 
be considered in other studies. In addition, we did not 
measure cognitive performance as broadly or deeply 
as some of the previous studies. However, it was dem-
onstrated that fluid intelligence correlates with other 
measures of cognitive performance [60]. Therefore, it is 
likely that our findings would be similar for other meas-
ures of cognitive performance. Nevertheless, future 
studies with a larger study population should incor-
porate broader and deeper phenotyping of cognitive 
performance such as functional brain networks. The 
current study considered the gut microbiome compo-
sition; thus, it was impossible to determine how much 
the gut microbiome-derived metabolites and inflam-
matory markers could have mediated or modified the 
association between the gut microbiome composition 
and fluid intelligence. Other studies should consider 
the longitudinal assessment of gut microbiome compo-
sition, gut microbiome-derived metabolites, inflamma-
tory markers, and cognitive performance in design and 
analysis. Despite taking the time between fecal sam-
pling and cognitive measurement into account in our 
analysis, it is possible that our findings could have been 

different for different average follow-up times. The con-
vectional analytical approach for differential abundance 
is to first test for an effect among samples with the 
variable of interest, and if there is a significant differ-
ence among samples, to then test for what features are 
driving the effect using methods such as Permutational 
multivariate analysis of variance or Adonis. However, 
the starting point of the current analysis was to capture 
the inter-taxa relationship among genera, to model our 
cognition performance (fluid intelligence score) as the 
outcome variable, which is supported by the direction 
of the biological relationship between gut microbiome 
and cognition and our prospective study design, and to 
model the fluid intelligence score without categoriza-
tion. All these aims would have been difficult to achieve 
simultaneously using the convectional analytical 
approach. Finally, bias in any step of our microbiomics 
workflow such as fecal sample collection and preserva-
tion, DNA extraction, library preparation, sequencing, 
or bioinformatics, could have influenced our results.

A major strength of the current work is that it is a 
prospective observational study, in which the assess-
ment of the exposure, gut microbiome composition 
precedes the outcome, fluid intelligence. Thus, our 
study design offers a reliable evidence of the association 
between the gut microbiome composition and fluid 
intelligence. To the best of our knowledge, this is also 
the first epidemiological study to report on the asso-
ciation between the gut microbiome composition and 
fluid intelligence among young adults. Other strengths 
are that we performed a priori power analysis and 
our statistical model building was theory driven. We 
also conducted complementary regression analyses to 
ensure the robustness of our results. Furthermore, our 
study population is young adults; therefore, the impact 
of reverse causality is likely low. Thus, it is unlikely 
that we could have overestimated the true association 
between gut microbiome composition and fluid intel-
ligence score. Nevertheless, better-designed larger 
prospective studies among young adults are needed to 
confirm our findings.

Conclusion
This study provides an interesting finding that the abun-
dance of 14 interacting genera in the gut microbiome is 
positively linked to fluid intelligence score. This lends 
credence to the growing evidence that the gut micro-
biome may influence cognitive performance. Taken 
together, our study suggests that cognitive performance 
may potentially benefit from gut microbiome-based 
intervention and this group of bacteria may have a prom-
ising health-promoting role.
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Methods
Study population
The DOrtmund Nutritional and Anthropometric Longi-
tudinally Designed (DONALD) study is an ongoing, open 
prospective epidemiologic cohort study of individuals liv-
ing in the German town of Dortmund and surrounding 
cities that commenced in 1985. The study was designed 
to investigate the relationships among dietary intake, 
metabolism, and growth from infancy into adulthood. 
Participants’ examinations included annually repeated 
anthropometric measurements and three-day weighed 
dietary records. Early-life factors such as birth weight of 
study participants were extracted from maternal delivery 
documents. The study was conducted in accordance with 
the Declaration of Helsinki and was approved by the Eth-
ics Committee of the University of Bonn. Informed con-
sent was obtained from the parents or legal guardians of 
the participants in childhood and later on from the par-
ticipants themselves. Details of the recruitment and fol-
low-up in the DONALD study are presented elsewhere 
[61].

Study design
This is a prospective study of adult (age ≥ 18 years) DON-
ALD study participants who provided fecal samples for 
gut microbiome compositional analysis [59] and who 
subsequently attended cognitive testing few months after 
fecal sampling. These individuals were singletons, full 
term (36–42 weeks) and birth weight of ≥ 2500 g. There 
were 40 individuals in total. For these 40 individuals, we 
retrieved their gut microbiome RA data, cognition data, 
and other covariates.

Assessment of gut microbiome composition
Details of the fecal sampling, DNA extraction, 16S ribo-
somal RNA sequencing have been published [59]. Briefly, 
fecal samples were collected between 2017 and 2018 at 
the participants’ home into tubes containing RNAlater 
(Qiagen) and sent to the Biobank within 24 h of collec-
tion. Bacterial genomic DNA was extracted from 0.25 g 
of fecal sample using the repeat bead beating plus column 
protocol as in combination with the QIAamp Fast DNA 
Stool Mini Kit. For the 16S ribosomal RNA sequencing, 
the V3-V4 regions of the 16S rRNA gene were ampli-
fied through 30 cycles of PCR reactions according to the 
16S Metagenomic Sequencing preparation protocol for 
Illumina MiSeq. The Quantitative Insights into Micro-
bial Ecology (QIIME version 1.8.0) was used for quality 
filtering of pair-end reads, which is based on a quality 
score of > 25 and the removal of mismatching barcodes. 
Prior to the analysis as part of the quality control pro-
cess, sequences which produced less than 40,000 reads 

were manually removed. USEARCH (version 7, 64-bit) 
was employed for deionization, chimera detection and 
clustering into operational taxonomic units (OTUs; 97% 
identity). Alignment of OTUs was carried out using the 
python nearest alignment space termination (PyNAST) 
and assignment of taxonomy of 97% similar identity 
against the SILVA SSURef database release v123. The R 
package Phyloseq was used to determine 341 genera and 
their relative abundances. The 158 abundant genera with 
RA ≥ 0.2% in at least 10% of the samples [59] were con-
sidered for this present study.

Assessment of cognitive performance, fluid intelligence
The cognitive performance was assessed between 2017 
and 2018 using the Cattell’s Culture Fair Intelligence Test, 
revised German version (CFT 20-R) [62]. This computer-
based CFT 20-R was done in the participants’ homes. 
The test comprises two parts, covering four domains: 
series, classifications, matrices, and topologies. The first 
and second parts comprised 56 and 45 figure-based ques-
tions and are to be complete within 14 min (4-4-3-3 min) 
and 12 min (3-3-3-3 min), respectively. The sum score of 
the domains was calculated from the correct answers, 
separately for each part. Age-standardized intelligence 
quotient (IQ) scores were derived from these sum scores 
to form IQ1 for the first part, IQ2 for the second part, 
and overall IQ–average of IQ1 and IQ2. If there was a 
difference ≥ 12 points between IQ1 and IQ2, the higher 
IQ was chosen as fluid intelligence score, otherwise the 
overall IQ was chosen as the fluid intelligence score.

Assessment of other covariates
Demographic information such as sex and birth weight 
were retrieved from maternal delivery records. Age at 
fecal sampling was calculated from the documented date 
of birth and the date of fecal sampling. Dietary intake 
was assessed annually using three-day weighed dietary 
records on three consecutive days. From all dietary 
records prior to fecal sampling (age ≤ 18 years), means of 
daily energy (kcal/day) and carbohydrate, fiber, protein, 
and fat (g/day) intakes were calculated. Anthropomet-
ric measurements were conducted annually at the study 
center. For the current study, we considered the weight 
and height measurement closest to fecal sampling to cal-
culate the body mass index (BMI). Physical activity was 
self-reported in a validated questionnaire covering the 
frequency and duration of individuals’ participation in 
the home and leisure physical activities during the week 
and at weekends. This was converted to metabolic equiv-
alent of task (MET)-hours/week and the average over the 
available records of age ≤ 18 years was calculated for each 
individual. Educational status and lifestyle factors of the 
participants such as alcohol consumption and smoking, 
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and self-reported intake of antibiotics and probiotics 
six months prior to fecal sampling, were obtained by 
questionnaires.

Statistical analyses
Continuous and categorical variables were summarized 
as median (25% and 75% percentile), and as count (per-
centage), respectively.

Microbiome datasets are typically compositional, high 
dimensional, and zero-inflated. Hence, modeling its 
individual variables (taxa), particularly as predictors in 
convectional regression models is suboptimal [63]. The 
conventional and appealing statistical methods that effi-
ciently model microbiome data include the simple log-
ratio, log-ratio between two geometric means (balances), 
and summed log-ratio with the summed log-ratio being 
arguably the most interpretable [64]. Recently, a data-
driven summed log-ratio method called amalgamation 
for reducing the dimensionality of compositional data 
has been proposed. [64]. Amalgamation outperforms tra-
ditional dimension reduction approaches, especially in 
terms of interpretability [64]. The resulting components 
(amalgams) from amalgamation can be described as bac-
terial communities [64].

For this current analysis, we considered the previously 
reported 158 abundant genera in this study population 
[59]. These include the core genera, Bacteroides, Lach-
noclostridium, and Blautia, and the diet-related genera, 
Phascolarctobacterium, Dialister, and Desulfovibrio [59]. 
The zero counts in the abundance of the genera were 
replaced by the Bayesian-multiplicative method. After-
wards, we applied the amalgamation method. We started 
with three amalgams, using the simplest amalgamation 
where each genus only contributes to one amalgam and 
an objective function that preserves the Aitchison dis-
tances between samples. The number of amalgams was 
increased by one until we achieved amalgams where 
Bacteroides, Lachnoclostridium, Blautia, Phascolarcto-
bacterium, Dialister, and Desulfovibrio were loaded. This 
was achieved at 12 amalgams. The amalgams (bacterial 
communities) were named according to the dominating 
bacterial family. As recommended by Quinn et  al. [64], 
we center log-ratio-transformed the resultantly assigned 
amalgams for further analysis.

A minimum of approximately two observations per 
variable is adequate for a valid linear regression model 
[65]. Therefore, for our 40 observations, we will require 
a maximum of 20 predictors. This implies that our 
model should comprise the 12 bacterial communities 
and a maximum of eight covariates. Additionally, we 
estimated the power of our multivariable linear regres-
sion with 40 observations (n = 40), 20 predictors, a 
significance level of 0.05, and 46% average variation in 

cognitive performance captured by models compris-
ing age, sex, and RA of the gut microbiome reported 
by another study [20]. With these values, the power 
of our multivariable linear regression model would be 
72%, which is close to the convectional threshold of 
80% [66]. We selected covariates, such as age [67, 68], 
sex [68, 69], BMI [70, 71], carbohydrate intake [59, 72], 
and alcohol consumption [73, 74] for which the direc-
tion of association with gut microbiome composition 
and cognition is well substantiated in the literature. We 
used these covariates to draw directed acyclic graphs 
in order to determine the minimal sufficient adjust-
ment sets for estimating the direct effect of the gut 
microbiome RA on cognition. From these covariates, 
we selected eight covariates in the study population 
that were measured and have no missing. These were 
sex (reference: female), age at fecal sampling, BMI at 
fecal sampling, average physical activity, Shannon alpha 
diversity index, average carbohydrate intake, average 
alcohol consumption, and time between fecal sampling 
and cognitive measurement. In addition, we assessed 
whether the response variable, fluid intelligence score 
has a normal distribution with constant variance using 
the Shapiro–Wilk W test for normality.

Furthermore, using two variable selection regression 
methods, the adaptive Least Absolute Shrinkage and 
Selection Operator (LASSO) regression and the ran-
dom forest regression with recursive feature elimina-
tion (RF-RFE), we identified true relevant predictors 
of fluid intelligence score by regressing it on the center 
log-ratio-transformed amalgams and the selected 
covariates. For both methods, we used five-fold cross-
validation. The coefficient-specific penalty level of the 
LASSO was the inverse of the absolute values of the 
best ridge coefficients. We extracted the predictors 
with non-zero coefficients at the value of the lambda 
that gives the minimum mean cross-validated error. 
In the RF-RFE, we selected the optimal set of predic-
tors when the root-mean-square error, R-squared, and 
the mean absolute error reached the maximum level. 
The true relevant predictors were the predictors shared 
by adaptive LASSO and RF-RFE. Finally, in order to 
obtain unbiased estimates for the true relevant pre-
dictors, we regressed fluid intelligence score on them 
using ordinary least squares regression using a five-fold 
cross-validation.

All statistical analyses were performed using the statis-
tical software R version 4.1.1. The replacement of zeros, 
amalgamation, the adaptive LASSO, and the RF-RFE 
were implemented using the cmultRepl function from 
the zCompositions package, the amalgam package, the 
glmnet package, and the caret package, respectively.
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