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Abstract 

Inflammatory bowel disease (IBD), a chronic gut immune dysregulation and dysbiosis condition is rapidly increas-
ing in global incidence. Regardless, there is a lack of ideal diagnostic markers, while conventional treatment provides 
scarce desired results, thus, the exploration for better options. Changes in the gut microbial composition and metabo-
lites either lead to or are caused by the immune dysregulation that characterizes IBD. This study examined the fecal 
metagenomics and metabolomic changes in IBD patients. A total of 30 fecal samples were collected from 15 IBD 
patients and 15 healthy controls for 16S rDNA gene sequencing and UHPLC/Q-TOF-MS detection of metabolomics. 
Results showed that there was a severe perturbation of gut bacteria community composition, diversity, metabolites, 
and associated functions and metabolic pathways in IBD. This included a significantly decreased abundance of Bacte-
roidetes and Firmicutes, increased disease-associated phyla such as Proteobacteria and Actinobacteria, and increased 
Escherichia coli and Klebsiella pneumoniae in IBD. A total of 3146 metabolites were detected out of which 135 were 
differentially expressed between IBD and controls. Metabolites with high sensitivity and specificity in differentiating 
IBD from healthy individuals included 6,7,4′-trihydroxyisoflavone and thyroxine 4′-o-.beta.-d-glucuronide (AUC = 0.92), 
normorphine and salvinorin a (AUC = 0.90), and trichostachine (AUC = 0.91). Moreover, the IBD group had significantly 
affected pathways including primary bile acid biosynthesis, vitamin digestion and absorption, and carbohydrate 
metabolism. This study reveals that the combined evaluation of metabolites and fecal microbiome can be useful 
to discriminate between healthy subjects and IBD patients and consequently serve as therapeutic and diagnostic 
targets.
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Introduction
IBD, consisting of ulcerative colitis (UC) and Crohn’s 
disease (CD), is a group of immunologically associated 
chronic disorders that primarily affect the gastrointesti-
nal tract, with a high tendency to recrudesce in the life-
time. Up to date, the etiology and pathogenesis of IBD 
largely remain unclear, while the current documented 
hypothesis holds that the disease results from multifac-
torial interactions between genetic, microbial, environ-
mental, and immunological elements [1]. Considering 
the constantly increasing prevalence in the developed 
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countries, and the rapidly surging incidence in the devel-
oping countries, the disability-adjusted life year and 
burden of disease are on the increase with much global 
concern [2, 3]. This calls for intense study of IBD, on the 
quest to identifying not only therapeutic targets but also 
diagnostic and prognostic markers to improve disease 
management.

Among the gut factors that have shown promising ther-
apeutic and diagnostic properties are the gut microbiome 
and metabolites. The human gut contains 1000–5000 
different species of microbes, with approximately 99% 
coming from Firmicutes, Proteobacteria, Bacteroidetes, 
and Actinobacteria. In the IBD environment, chronic 
immune dysregulation is intertwined with the aberrant 
composition and diversity of these microbes (dysbiosis) 
and their metabolomics [4, 5]. The physiological role of 
the gut metagenomics and metabolomics, as well as their 
link with IBD pathogenesis, have been widely explored 
[6–9], where they are severely altered in the gut of IBD 
patients. Although UC and CD share many epidemio-
logic, immunologic, therapeutic, and clinical features, 
studies show that they have distinct profiles at the micro-
biome level [10]. The human gut microbiome represents 
a complex ecosystem contributing essential functions 
to its host. Although recent large-scale metagenom-
ics studies have provided insights into its structure and 
functional potential, the functional repertoire which is 
contributed to human physiology and pathology remains 
largely unexplored [11], including in IBD. Moreover, 
the gut metabolite profile, which is jointly derived from 
microbially-derived compounds, diet, and modified 
human metabolites, shapes the microbiota-host interac-
tions [12], thus, a crucial part of IBD pathogenesis.

Emerging studies around the cross point between IBD 
and gut metagenomics/metabolomics are promising and 
anticipated to soon impact daily medical practice signifi-
cantly. This study examined the differential gut metagen-
omics and metabolomics profile between IBD patients 
and healthy controls from stool samples. The correlation 
between flora and metabolites of differential significance 
was also analyzed.

Results
Variations in gut bacteria community between IBD 
and healthy individuals
As the most suitable index for bacterial phylogeny and 
taxonomic identification, 16S rDNA was used to assess 
differences in gut bacteria community between the two 
groups. Results showed significant variations in bacte-
ria composition from the phylum to species levels. The 
exploration of OTUs via UCLUST in QIIME software 
revealed that while both groups shared a large propor-
tion of the OTUs (355 common OTU’s), IBD samples 

had 13 unique OTUs and the control had 32 unique 
OTUs (Fig.  1A). At the phylum level, the bacteria com-
munity structure of IBD patients had reduced levels of 
Firmicutes, Bacteroides, Fusobacteria, and Tenericutes 
but increased abundance of Proteobacteria and Act-
inobacteria compared with healthy controls. The top 10 
abundant phyla between the healthy and IBD groups are 
presented in Fig. 1B and Table 1. We further explored the 
specific bacteria alterations between the two groups by 
examining the top 10 species of significant abundance, 
where increased abundance in IBD included Escherichia 
coli, Klebsiella pneumoniae, Bifidobacterium longum 
subsp. Longum, Bacteroides ovatus V975, and uncultured 
bacterium, while uncultured Bacteroides sp. and s_gut 
metagenome/human gut metagenome were reduced in 
abundance (Table 1, Fig. 1C). Community Heatmap map 
was used to intuitively express the size of the clustered 
data value at each classification level. The phylum-level 
clustering in IBD confirmed a significantly increased 
abundance of Proteobacteria, Actinobacteria, and Verru-
comicrobia and a decreased abundance of 12 other phyla 
as sown in Fig. 1D. Moreover, group specific species clas-
sification tree revealed the changes at all levels (Fig. 1E). 
For instance, at the genus level, IBD samples had reduced 
Bacteroides, Dialister, Subdoligradulum, and Rumino-
coccus 2, but increased abundance of Escherichia-Shi-
gella and Bifidobacterium.

Alpha‑ and beta‑diversity changes in gut bacteria 
community in IBD patients
To explore the differences in α-diversity index between the 
groups, four diversity indexes (Chao 1, ACE [abundance-
based coverage estimator], goods coverage, and observed 
species) were used. These tools revealed significant differ-
ences in the bacteria diversity between IBD samples and 
normal controls by intuitively reflecting the median, dis-
persion, maximum, minimum, and abnormal values of spe-
cies diversity in the groups. There was significantly reduced 
α-diversity in IBD samples compared to healthy con-
trols; Chao 1(p = 0.009), ACE (p = 0.004), goods coverage 
(p = 0.021), observed specifications (p = 0.002) (Fig. 2A, B). 
To further confirm the difference between the two sample 
groups to the greatest extent, principal component analysis 
(PCA) and non-metric multidimensional scaling (NMDS) 
statistics were employed. PCA results showed more closely 
clustered IBD samples, indicating reduced α-diversity as 
compared to the more scattered healthy control samples, 
indicating a more diverse bacterial community composi-
tion (Fig. 2C). The NMDS statistical ranking method, as a 
nonlinear model, was used to overcome the shortcomings 
of the linear model (i.e., PCA) and better reflect the nonlin-
ear structure of data. The multi-dimensional space gener-
ated by NMDS revealed the degree of difference between 
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both the inter—and intra- groups (Fig. 2D). In the analysis 
of β-diversity index differences between the groups, the 
nonparametric test, Anosim, revealed a significant differ-
ence in β diversity between the two groups (Fig. 2E). The 
weighted UniFrac distance box chart further confirmed the 
increased β-diversity in the IBD group (p = 0.005) (Fig. 2F).

Biomarker analysis and functional prediction between IBD 
and healthy control
The observed differences were further analyzed to dis-
cover possible high-dimensional biomarkers and genomic 
features that differentiate IBD stool samples from normal 

controls using the LEfSe software. The results, including 
a cladogram, linear discriminant analysis (LDA) value 
distribution, and abundance comparison diagram of 
biomarkers with statistical differences between the two 
groups, revealed probable biomarkers for IBD. There was 
increased abundance and genomic features of the fami-
lies Enterococcaceae and Lactobacillaceae and the genera 
Enterococcus, Lactobacillus, and Eggerthella, represent-
ing the microbial groups that play an important role in 
the IBD group, and serving as distinguishing biomark-
ers (Fig.  3A–C). Moreover, STAMP differential analysis 
revealed several bacteria communities that significantly 

Fig. 1 Gut bacteria community variations between IBD and healthy individuals. A Venn diagram; B Variation in the top 10 abundant phyla between 
groups; C Variation in the top 10 abundant species between the groups; D Community cluster heatmap at the phylum level; E Group specific 
species classification tree. N—Healthy control group; P—IBD group
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differentiate the IBD group from the healthy group at 
the genus level, including reduced relative abundance of 
Dialister, Alistipes, Subdoligranulum, Ruminococcaceae 
UCG-002, UCG-005, UCG-010, and Coprococcus 2, but 
increased abundance of Anaerostipes, [Eubacterium] hal-
lii group, and Eggerthella (Fig. 3D).

For functional prediction in IBD and its differential 
value, the PICRUSt software was used to infer the func-
tional gene composition of samples by comparing the 
species composition information obtained from 16S 
sequencing data, to analyze the functional differences 
between the different groups and their value as biomark-
ers. Moreover, the COG homologous protein cluster and 
function classification database of prokaryotes was used 
to complement KEGG and reveal the functional com-
position of the flora more comprehensively. The KEGG 
and COG function prediction analyses of the metabolic 
function changes in the IBD group via STAMP analysis 
showed significantly increased factors such as carbohy-
drate metabolism and transport, transcription, xenobi-
otics biodegradation and metabolism, metabolism and 
transport of amino acids, and biosynthesis of other sec-
ondary metabolites (Fig.  4A, C), as associated with the 
heatmap analysis of the significant gene composition 
variations between the groups (Fig.  4B). There was also 
increased functional indication of immune system dis-
eases and infectious diseases in the IBD group (Fig. 4A). 
LEfSe LDA analysis based on COG homologous pro-
tein cluster and function classification revealed signifi-
cantly elevated carbohydrate transport and metabolism 
and RNA processing and modification in the IBD group 

as against reduced translation of ribosomal structures 
and biogenesis, and chromatin structure and dynamics 
(Fig.  4D). The abundance comparison of the increased 
functional items (as appeared in individual samples) in 
the two groups is further shown in Fig. 4E, F.

Variations in gut metabolomics between IBD and healthy 
controls
Differential analysis of significant metabolites
A high-resolution nontargeted metabolomics analysis 
using ultra-high-performance liquid chromatography-
quadrupole time-of-flight mass spectrometry (UHPLC-
Q-TOF MS) was carried out to identify metabolites, 
followed by strict checks and manual confirmation of 
results. The positive ion mode identified 2223 metab-
olites while the negative ion mode identified 1063 
metabolites, yielding a combined total of 3146 metabo-
lites. Further analysis revealed a total of 135 differential 
metabolites between IBD and healthy controls (Table 2). 
Based on univariate analysis (fold change (FC) analy-
sis), all metabolites detected in positive and negative 
ion modes were screened for the differential metabolites 
(FC > 1.5- rose red, FC < 0.67- blue, p-value < 0.05) in a 
volcano plot. The significant differential metabolites were 
distributed among 33 classes and 14 superclasses of com-
pounds (Fig.  5A, B). PCA and orthogonal partial least 
squares discriminant analysis (OPLS-DA) of both the 
negative and positive ion mode (Fig.  5C–F) along with 
their displacement test (Fig. 5G, H) confirmed a distinct 
set of differential metabolites associated with the groups.

Table 1 Species annotation of the top 10 gut flora with the largest abundance in each group at the phyla and species classification 
levels

Phylum name Relative 
abundance in 
healthy controls

Relative 
abundance in 
IBD patients

Species name Relative 
abundance in 
healthy controls

Relative 
abundance in IBD 
patients

Phylum Firmicutes 0.573439 0.498548 Species Uncultured bacterium 0.534105 0.446245

Proteobacteria 0.192233 0.273626 Uncultured organism 0.095377 0.102373

Bacteroidetes 0.19225 0.132276 Escherichia coli 0.036243 0.116567

Actinobacteria 0.027346 0.092594 Unidentified 0.017717 0.071877

Fusobacteria 0.008666 0.00015 Gut metagenome 0.078422 0.011995

Tenericutes 0.004209 3.39E-05 Klebsiella pneumoniae 0.016731 0.026042

Verrucomicrobia 0.000156 0.001754 Bacteroides ovatus 
V975

0.009631 0.023501

Epsilonbacteraeota 0.000686 0.000407 Bifidobacterium 
longum subsp. longum

0.005054 0.017934

Patescibacteria
Chloroflexi

0.000274
0.000164

0.000214
8.63E-05

Human gut metage-
nome

0.021813 0.006999

Uncultured Bacteroides 
sp.

0.001932 0.015503

Others 0.000576 0.000311 Others 0.182975 0.160965
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Fig. 2 α and β diversity variation in the groups. A Chao 1 box chart of α diversity differences between the groups; B Abundance-based coverage 
estimator box chart of α diversity differences between the groups; C PCA of the community composition of the groups; D NMDS analysis reflecting 
the nonlinear structure of the bacteria community composition of the groups; E Anosim group differences in β diversity; F Weighted UniFrac 
distance box chart of β diversity differences between the groups. N—Healthy control group; P—IBD group

Fig. 3 Microbial biomarker analysis between IBD and healthy controls. A Cladogram of LEFSe analysis results in the IBD group; B LDA value 
distribution differentiating IBD group; C Relative abundance of the potential biomarker in the IBD group; D STAMP differential analysis of bacterial 
populations between the groups at the genus level

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig. 4 Functional prediction and biomarker analysis of the groups. A KEGG STAMP analysis of the significant gene composition variations between 
the groups; B COG heatmap analysis of the significant gene composition variations between the groups; C COG STAMP analysis of the significant 
gene composition variations between the groups; D LDA value distribution and comparison of the abundance of functional items with statistical 
differences between the groups based on COG function prediction; E The comparison of abundance of RNA processing and modification function; 
F The comparison of abundance of carbohydrate metabolism and transport function
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In further examination of the differential metabo-
lites, the negative ion mode molecules revealed the 
top five upregulated differential metabolites as Caly-
cosin, His-Met, 1,2,3-benzenetriol, G(8-o-4)fa sul-
fate, and.Alpha.-apooxytetracycline, with the top five 
downregulated being Lithocholic acid, Clausarin, Gin-
senoside rh2, Isodeoxycholic acid, and Propylpyra-
zoletriol (Fig.  5I). The top five upregulated versus 
downregulated differential metabolites in the positive 
ion mode were P-methoxymethamphetamine, Apigenin, 

O-methylarmepavine, 2,5-dimethoxy-4-methylpheneth-
ylamine, and Luteolin, versus 1(2  h)-pyrimidineaceta-
mide, n-[(1  s,3  s,4  s)-4-[[2-(2,6-dimethylphenoxy)acetyl]
amino]-3-hydroxy-5-phenyl-1-(phenylmethyl)pentyl]
tetrahydro-4-hydroxy-.alpha.-(1-methylethyl)-2-oxo-, 
(.alpha.s)-, Isocaproic acid, Garcinolic acid, Anhydroe-
cgonine methyl ester, and Salvinorin a, respectively 
(Fig.  5J). Furthermore, AUC (Area under the ROC 
Curve) analysis revealed several metabolites with high 
sensitivity and specificity in differentiating IBD from 

Table 2 An overview of the metabolomic analysis outcome

Key metabolomics analysis results

Total metabolites identified 3146

Comparative analysis of differences between groups

Groups Total differential metabolites Significant difference metabolic pathways

IBD vs healthy controls 135 Vitamin digestion and absorption, primary bile acid biosynthesis, protein digestion and 
absorption, ABC transporters, basal cell carcinoma, glutathione metabolism, ferroptosis

AUC aggregate measure of performance of differential metabolites

Metabolite AUC value

6,7,4′-trihydroxyisoflavone 0.92

Thyroxine 4′-o-.beta.-d-glucuronide 0.92

Trichostachine 0.91

[(2r,3 s,4 s,5r,6r)-3,4,5-trihydroxy-6-[2-(3-hydroxy-5-oxooxolan-3-yl)propoxy]oxan-2-yl]methyl (e)-3-(3,4-dihydroxyphenyl)prop-2-enoate 0.91

Normorphine 0.90

Salvinorin a 0.90

Esculetin 0.89

Mitraphylline 0.88

Indole-3-carboxaldehyde 0.88

Ginsenoside rh2 0.88

Arachidonoylserotonin 0.88

11-hydroxy-5z,8z,12e,14z,17z-eicosapentaenoic acid 0.88

10-deacetylbaccatin iii 0.88

9-cis-retinol 0.88

(5-benzoyloxy-3-chloro-4,6-dihydroxycyclohexen-1-yl)methyl benzoate 0.88

[(4e)-7-acetyloxy-6-hydroxy-2-methyl-10-oxo-2,3,6,7,8,9-hexahydrooxecin-3-yl] (e)-but-2-enoate 0.87

Dihydroberberine 0.87

N-nitrosopyrroolidine 0.87

Prothioconazole 0.87

Patchouli alcohol 0.87

Fig. 5 Differential analysis of significant metabolites between IBD and healthy controls. A Volcano plot of significantly different metabolites 
according to molecular class in negative ion mode; B Volcano plot of significantly different metabolites according to molecular class in positive 
ion mode; C PCA score diagram of negative ion mode; D PCA score diagram of positive ion mode; E Negative ion mode OPLS-DA score plot; 
F Positive ion mode OPLS-DA score plot; G Negative ion mode OPLS-DA displacement test; H Positive ion mode OPLS-DA displacement test; I 
Multiple analysis of significant differences in metabolite expression in negative ion mode; J Multiple analysis of significant differences in metabolite 
expression in positive ion mode; K AUC of 6,7,4’-trihydroxyisoflavone; L AUC of [(2r,3 s,4 s,5r,6r)-3,4,5-trihydroxy-6-[2-(3-hydroxy-5-oxooxolan-3-yl)
propoxy]oxan-2-yl]methyl (e)-3-(3,4-dihydroxyphenyl)prop-2-enoate (0.91). N—Healthy control group; P—IBD group

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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healthy individuals, including 6,7,4′-trihydroxyisofla-
vone (AUC = 0.92), thyroxine 4’-o-.beta.-d-glucuronide 
(AUC = 0.92), trichostachine (AUC = 0.91), normorphine 
(AUC = 0.90), and salvinorin a (AUC = 0.90). The top 
20 metabolites in AUC measurement are presented in 
Table  2, while Fig.  5K, L shows representative diagrams 
of the AUC analysis.

Changes in metabolic pathways and function in IBD
KEGG pathway enrichment analysis was carried 
out through the Fisher’s Exact Test to determine the 

significantly affected metabolic and signal transduction 
pathways in IBD. The results revealed altered metabolites 
(Fig. 6A, B) and 13 significantly affected pathways includ-
ing vitamin digestion and absorption, primary bile acid 
biosynthesis, protein digestion, and absorption, thiamine 
metabolism, glutathione metabolism, ABC transporters, 
central carbon metabolism in cancer, and ferroptosis. The 
heatmap of differential metabolites in the largest pathway 
identified (ABC transport) is shown in Fig. 6C. Analysis 
of overall changes of KEGG metabolic pathway using 
differential abundance score and pathway enrichment is 

Fig. 6 Changes in metabolic pathways and function. A Negative ion pattern of significantly different metabolite hierarchical clustering heat map 
of individual samples within the groups; B Positive ion pattern of significantly different metabolite hierarchical clustering heat map of individual 
samples within the groups; C KEGG pathway differential metabolite clustering heat map of ABC transport; D KEGG metabolic pathway enrichment 
map (Bubble chart); E Differential abundance score maps for all differential metabolic pathways; F Differential abundance score map of all 
differential metabolic pathways (classified according to pathway hierarchy). N—Healthy control group; P—IBD group
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shown in Fig. 6D, E. Pathway hierarchy analysis showed 
that the changes in the IBD patients affected cancer 
function, cell growth and death, digestive system, lipid 
metabolism, membrane transport, and metabolism of 
cofactors, vitamins, and other amino acids (Fig. 6F). The 
specific metabolites dysregulated in these pathways are 
presented in Table 3. These results indicate significantly 
altered metabolomics and associated pathways in IBD 
patients compared to healthy individuals.

Correlation of differential flora and metabolites in IBD
To further assess the metabolomics changes in the IBD 
group, the relative abundance of three flora of significant 
difference at the genus level (Eggerthella, Enterococcus, 
Lactobacillus) and 89 significantly differential metabo-
lites were sorted and analyzed. Spearman analysis was 
used to generate a correlation coefficient matrix heat 
map and hierarchical clustering heat map (Fig. 7A, B) to 
reflect the similarities and differences of expression pat-
terns of the significant flora and metabolites. There were 
1144 pairs of significantly related differential bacteria 
and metabolites, of which 285 pairs had a more signifi-
cant correlation (P < 0.01). The matrix not only showed 
the correlation between significantly different flora and 
metabolites but also between significantly different 
metabolites-metabolite and flora-flora. Enterococcus 
had positive significant correlation with 17 metabolites 
including cholic acid, calycosin, and N-nitrosopyrroli-
dine (p < 0.001), and flavin mononucleotide, apigenin, 
L-valine, and 3alpha,7beta,12alpha-trihydroxy-5beta-
cholan-24-oic acid (p < 0.01), but negatively significant 
correlation with 43 metabolites including ginsenoside 
rh2, androsterone, indole-3-carboxaldehyde, salvinorin a, 
isodeoxycholic acid, and lithocholic acid (p < 0.001), and 
glycerol, uracil, oxypurinol, 25-hydroxycholesterol, glyco-
lithocholic aid, xanthine, and hypoxyxanthine (p < 0.01). 
Eggerthella positively correlated with 13 metabolites 
including corydaline, delsoline, calycosin, apigenin, fla-
vin mononucleotide, his-met, and luteolin (p < 0.01), 
but negatively correlated with 43 metabolites including 
hecogenin, salvinorin a, lithocholic acid, hypoxanthine, 
neomycin, Asiatic acid, piperonyl sulfoxide (p < 0.001). 
Lactobacillus had positive significant correlation with 
9 metabolites including L-valine (p < 0.001), N-nitros-
opyrrolidine, calycosin, apigenin, flavin mononucleo-
tide, his-met, luteolin, and 1,2,3-benzenetriol (p < 0.05), 
but negative significant correlation with 11 metabolites 
including 25-hydroxycholesterol, androsterone, ginseno-
side rh2, pristimerin, and cholesterol (p < 0.01) (Fig. 7B).

Moreover, the Cytoscape 3.5.1 software was used 
to generate a different perspective of the relationship 
between the flora and metabolites. The network chart 
revealed a total of 8 pairs of flora-metabolites with 

significant positive correlation and 44 pairs with a sig-
nificant negative correlation that connect the three flora 
(Fig. 7C). The distribution characteristics of the correla-
tion were also generated with a scatter diagram, which 
revealed 52 pairs of correlated flora-metabolites with 
significant levels. For example, the scatter diagram of 
the correlation between Eggerthella and piperonyl sul-
foxide, and Enterococcus and N-nitrosopyrrolidine are 
shown in Figs.  7D, E. These observations do not only 
reveal changes in IBD but also provide important data in 
the search for therapeutic targets and diagnostic markers 
in IBD. However, more specific and detailed studies are 
required.

Discussion
The role of the intestinal microbiota in human health 
continues to gain more research attention since changes 
in the composition of the intestinal bacterial community 
or environment have been demonstrated in patients with 
diseases such as IBD, neurodegenerative diseases, can-
cers, allergy, autoimmune diseases, as well as some life-
style-related and metabolic diseases [13–15]. A healthy 
gut environment is regulated by the exquisite balance of 
intestinal microbiota, metabolites, and the host’s immune 
system. Host physiology can be altered at the cellular 
level by microbiome-induced cell signaling, proliferation, 
and neurotransmitter biosynthesis, leading to mucosal 
and systemic alterations and thereby affecting homeo-
stasis, barrier function, innate and adaptive immune 
responses, and metabolism [16]. With such a broad range 
of effects on host physiology and its role in the induc-
tion, education, and function of the immune system, 
it is not surprising that the microbiota is implicated in 
gut-related diseases including IBD. In this study, fecal 
samples were obtained from IBD and healthy adults to 
ascertain the alterations in the gut metagenomics profile 
of IBD patients. It was confirmed that IBD patients suf-
fered severe perturbation in the gut bacteria community 
compared to healthy individuals. The two most abundant 
phyla in humans (Bacteroidetes and Firmicutes) were 
decreased while disease-associated phyla such as Pro-
teobacteria and Actinobacteria were increased. The IBD 
samples were associated with an increased abundance of 
species such as Escherichia coli, Klebsiella pneumoniae, 
Bifidobacterium longum subsp. Longum, Bacteroides 
ovatus V975, and uncultured bacterium. Moreover, there 
was significantly altered alpha- and beta-diversity in the 
gut bacteria community in IBD patients.

These findings are confirmed by several studies 
including collective studies that found a decrease in gut 
microbial diversity in IBD patients with a decrease in Fir-
micutes [17, 18]. Matsuoka and Kanai [19] stated that the 
most consistent observation in IBD dysbiosis is reduced 
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bacterial diversity; an increase of Proteobacteria and 
a decrease of Firmicutes [19]. A study of the composi-
tion of the microbiota and the metabolites in the stool 
of 183 subjects (82 UC, 50 CD, and 51 healthy controls) 
also revealed significantly increased Proteobacteria, Ver-
rucomicrobia, and Fusobacteria but decreased Bacte-
roidetes and Cyanobacteria [20]. While bacteria species 
such as Escherichia coli are notable culprits in the cau-
sation and progression of gastrointestinal tract diseases, 
recent studies have recognized a new player, Klebsiella 
pneumoniae, in gastrointestinal tract disturbances [21] 
and as a dysbiosis-associated species in IBD [22]. In other 
studies, metagenomics and culturomics have identi-
fied strains of Escherichia coli and Ruminococcus gnavus 
to be linked to  IBD  and gut inflammation [23, 24]. It is 
also reported that the combination of Ruminococcaceae 
F. prausnitzii phylogroups and Escherichia coli offers the 
potential to discriminate between IBD and CRC patients 
and could assist in IBD subtypes classification [25]. The 
integration of these species may yield a potential bio-
marker for IBD diagnosis, thus, the need for further con-
sideration. On the other hand, the increased abundance 
of Bifidobacterium longum subsp. Longum in the IBD 
samples may be attributed to host-responsive mecha-
nisms against gut inflammation since this species has 
been demonstrated to possess strong antioxidant capac-
ity [26], attenuate intestinal injury [27], and generally 

protect against IBD [28]. Alterations in the bacteria pop-
ulation is also linked with patients’ response to treatment 
as demonstrated by studies such as Dovrolis et  al. [29], 
which reported that Infliximab treatment has a notable 
impact on both the gut microbial composition and the 
inflamed tissue transcriptome in IBD patients [29].

The discovery of a reliable biomarker for IBD would be 
a breakthrough for the disease diagnostic and possible 
treatment. The study, therefore, examined the observed 
bacteria differences for further discovery of possible 
high-dimensional biomarkers and genomic features that 
differentiate IBD stool samples from normal controls. 
The genera Enterococcus, Lactobacillus, and Eggerthella, 
representing the microbial groups that play an impor-
tant role in the IBD group, served as distinguishing bio-
markers. Other potential biomarkers for IBD include 
elevated abundance of Anaerostipes and [Eubacterium] 
hallii group, and reduced population of Ruminococ-
caceae UCG-002, UCG-005, UCG-010, Coprococcus 2, 
Dialister, Alistipes, and Subdoligranulum. However, these 
observations require further detailed exploration. Stud-
ies that agree with this finding include a recent study on 
functional dysbiosis in the gut microbiome during IBD 
activity, which demonstrated a characteristic increase in 
facultative anaerobes at the expense of obligate anaer-
obes. For example, the relative abundance of Ruminococ-
caceae UCG 005 and Eubacterium rectale decreased with 

Table 3 Dysregulated KEGG metabolic pathways and associated metabolites in IBD

Pathway hierarchy Map ID Map name Metabolite name Up number Down 
number

Digestive system hsa04977 Vitamin digestion and absorption Flavin mononucleotide (fmn), 
Pantothenate, Thiamine, ( +)-.alpha.-
tocopherol, Cholesterol

1 4

Digestive system hsa04974 Protein digestion and absorption L-Valine, Isovaleric acid, Glutamic 
acid, DL-tyrosine, DL-Glutamic acid

1 4

Lipid metabolism hsa00120 Primary bile acid biosynthesis Cholic acid, 25-hydroxycholesterol, 
7.alpha., 27-dihydroxycholesterol|C
holesterol

1 3

Cell growth and death hsa04216 Ferroptosis Glutamic acid, ( +)-.alpha.-tocoph-
erol, DL-Glutamic acid, L-glutathione, 
reduced

1 3

Membrane transport hsa02010 ABC transporters L-Valine, Glycerol, Glutamic acid, 
Deoxyinosine|2′-deoxyinosine, 
Thiamine, DL-Glutamic acid, His-Lys, 
L-glutathione, reduced

3 6

Metabolism of cofactors and 
vitamins

hsa00770 Pantothenate and CoA biosynthesis L-Valine, Uracil, Pantothenate 1 2

Metabolism of cofactors and 
vitamins

hsa00730 Thiamine metabolism Thiamine monophosphate, DL-
tyrosine, Thiamine

1 2

Cancer: overview hsa05230 Central carbon metabolism in 
cancer

L-Valine, Glutamic acid, DL-tyrosine, 
DL-Glutamic acid

1 3

Metabolism of other amino acids hsa00480 Glutathione metabolism Glutamic acid, 5-L-Glutamyl-
L-alanine, DL-Glutamic acid, 
L-glutathione, reduced

1 3
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increasing IBD-associated host-microbial interaction fac-
tors [22]. Most of the decreased bacteria population pos-
sess anti-inflammation properties, thus an indication of 
compromised inflammation resolution. For instance, the 

Ruminococcaceae, Faecalibacterium prausnitzii, which 
is the most abundant bacterium in the human intestinal 
microbiota of healthy adults (representing more than 
5% of the total bacterial population) is depleted in CD 

Fig. 7 Association analysis of flora and metabolites with significant difference between the groups. A Spearman correlation coefficient matrix 
heat map of significant difference flora and metabolites; B Spearman correlation analysis hierarchical clustering heat map of significant difference 
flora and metabolites. The correlation coefficient R is expressed in color, where R > 0 indicates a positive correlation and is represented by red, R < 0 
indicates a negative correlation and is expressed in blue. The darker the color, the stronger the correlation. P-value reflects the significant level 
of correlation and was defined by P < 0.05 as *, P < 0.01 as * *, P < 0.001 as * * *; C Correlation network diagram. The color of the line represents 
the positive and negative value of the correlation coefficient between the two (blue represents negative correlation and red represents positive 
correlation), and the thickness of the line is directly proportional to the absolute value of the correlation coefficient. The node size is positively 
correlated with its degree, that is, the greater the degree, the larger the node size. Spearman correlation analysis network of significant difference 
flora and metabolites; D, E Representative scatter diagram of correlation
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and UC and has been shown to have in vitro and in vivo 
anti-inflammatory properties [30]. Alterations in Lach-
nospiraceae and Ruminococcaceae families in both CD 
and UC patients, typical producers of short-chain fatty 
acids, characterize frequently relapsing disease and poor 
responses to treatment, as well as the risk of later disease 
recurrence of patients in remission [31]. Another study 
reported significantly reduced abundance of Faecalibac-
terium prausnitzii and Eubacterium rectale, but enriched 
Escherichia coli in UC patients, where Escherichia coli 
abundance correlated positively with increased abun-
dance of several virulence genes [32].

It has been reported that metagenomics approaches 
alone are insufficient to infer the functional metabolic 
activity of the microbiome [33]. Thus, functional, path-
way-based analyses are required to elucidate the changes 
in the composition of the gut microbiomes of IBD 
patients and the metabolic changes that could serve as 
a target for therapeutic interventions. Gut microbes can 
alter pools of available metabolites thereby modifying 
host-generated signaling molecules. This study applied 
the PICRUSt software to infer the functional gene com-
position of samples by comparing the species composi-
tion information obtained from 16S sequencing data, to 
analyze the functional differences between the differ-
ent groups and their value as biomarkers. The COG and 
KEGG functional prediction analyses of the metabolic 
function changes in the IBD samples via STAMP showed 
significantly increased functions such as carbohydrate 
metabolism and transport, metabolism and transport of 
amino acids, transcription, xenobiotics biodegradation 
and metabolism, and biosynthesis of other secondary 
metabolites. There was also increased functional indica-
tion of immune system diseases and infectious diseases 
in the IBD group. Moreover, translation of ribosomal 
structures and biogenesis, and chromatin structure and 
dynamics were decreased in IBD. Liang [34] reported 
that the microbial and metabolic signatures of IBD 
patients are significantly different from those of healthy 
controls, and identified a total of 17 discriminative path-
ways between the two groups, mainly involved in amino 
acid, nucleotide biosynthesis, and carbohydrate degrada-
tion [34].  The gene expression signature of the colonic 
mucosa of UC patients showed dysregulation in media-
tors associated with carbohydrate metabolism, solute 
transport, autophagy, ubiquitination, ER stress, oxidative 
stress, and T cell regulation [35].

The last few years have seen an increase in the studies of 
experimental and human IBD focusing on the search for 
small metabolites, such as amino acids, bases, and tricar-
boxylic acid cycle intermediates. Experimental methods 
for the screening of metabolites including fecal extracts 
have shown that IBD patients and healthy individuals, as 

well as the IBD subtypes, express distinct metabolic pro-
files. Metabolomics data of fecal extracts have revealed 
disruptions in not only metabolites but bacterial popu-
lations, findings that are indicative of a close association 
between the two factors and their possible involvement 
in the development of IBDs [36, 37]. Researchers agree 
that a useful approach to gaining insight into the meta-
bolic activity of a system is metabolomics measurements 
since metabolite profiles are a readout of what is happen-
ing at the biochemical level. Several studies have ana-
lyzed the fecal metabolome in IBD patients and cohorts 
and confirmed severe alterations compared with healthy 
individuals [12, 20, 38]. For instance, IBD patients have 
reduced fecal levels of the short-chain fatty acid butyrate, 
fecal medium-chain fatty acids (e.g., pentanoate and hex-
anoate), and fecal vitamin B levels, while fecal levels of 
lipids, amino acids, and amines have been reported to 
increase in IBD patients [20, 39]. In this study, UHPLC-
Q-TOF MS identified a total of 3146 metabolites, out of 
which 135 were differentially expressed between IBD and 
healthy controls. The results of KEGG pathway enrich-
ment analysis of the differential metabolites revealed 
13 significantly affected pathways including generally 
decreased vitamin digestion and absorption, primary bile 
acid biosynthesis, protein digestion and absorption, ABC 
transporters, central carbon metabolism in cancer, glu-
tathione metabolism, and ferroptosis.

Several untargeted studies have demonstrated huge 
disturbances of the gut metabolome in IBD, which is 
in keeping with the known dysbiosis in gut communi-
ties. Metabolite groups of interest include SCFAs, bile 
acid metabolites, vitamins, and tryptophan metabolites, 
where the essential roles for these metabolites in normal 
immune development, homeostasis, and IBD have been 
demonstrated [40]. It is documented that IBD patients 
suffer a significant risk of vitamin B12 and folate insuf-
ficiencies [41], vitamin D deficiency [42], among other 
micronutrient absorption and related outcomes [43]. Pri-
mary bile acids possess amphipathic properties, render-
ing them highly instrumental for not only lipid digestion 
and absorption, but immune responses and several meta-
bolic functions in the small intestine [44, 45]. In the IBD 
group, differentially abundant species and functions from 
the metagenomics profiles reflected adaptation to oxida-
tive stress in the IBD gut and are consistent with previous 
findings [12]. The dysregulation in glutathione metabo-
lism, the most important intracellular antioxidant, may 
contribute to reactive oxygen species build-up, causing 
tissue injury in IBD as earlier reported [46]. Moreover, 
ferroptosis, a newly characterized form of regulated cell 
death, is driven by the lethal accumulation of lipid per-
oxides catalyzed by cellular free iron. It has been widely 
documented that the fundamental features of ferroptosis, 
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including iron deposition, glutathione exhaustion, glu-
tathione peroxidase 4 inactivation, and lipid peroxida-
tion, are manifested in the injured gastrointestinal tract 
in IBD patients [47]. The dysregulation of these key func-
tional pathways including protein digestion and absorp-
tion, and ABC transporters as a characteristic feature of 
IBD, contributes to the recurrent immune perturbation 
and subsequent tissue injury. These results underline the 
potential role of an inter-omics approach in understand-
ing the metabolic pathways involved in IBD.

Concerning the mechanisms associated with the 
observed changes, it is reported that host genetics, 
immune dysregulation, and gut microbiota are broadly 
implicated. Genes such as NOD2, IRGM, ATG16L1, 
LRRK2, PTPN2, IL23R, Il10, Il10RA, Il10RB, CDH1, and 
HNF4α influence intestinal microbiome and metabo-
lites in IBD [48]. For example, the CD polymorphism, 
ATG16L1 T300A, alters the gut microbiota and enhances 
the local Th1/Th17 response, contributing to dysbiosis 
and immune infiltration prior to disease symptoms [49]. 
Mucin-type O-glycans alter the diversity of gastrointes-
tinal microorganisms, which in turn increases the level 
of O-glycosylation of host intestinal proteins via the uti-
lization of glycans. The mechanism that influences the 
selection of host’s bacteria might involve mucin-type 
O-glycans as demonstrated in mice with Core-1 glycan 
deficiency in the small intestine, exhibiting higher lev-
els of Bacteroidetes and lower levels of Firmicutes than 
wild-type mice [50], and in mice lacking β1, 4-N-acetyl-
galactosamine transferase 2 (B4galnt2) [51]. Microbial 
metabolites, including short chain fatty acids (SCFAs), 
tryptophan (Trp), bile acid, and vitamins are actively 
absorbed or diffused across the intestinal lining to affect 
the host response in the intestine as well as at systemic 
sites via the engagement of cognate receptors, influenc-
ing epithelial barrier function and intestinal homeostasis. 
In addition, food constituents such as micronutrients are 
important regulators of mucosal immunity, with direct 
or indirect effects on the gut microbiota, thus [52]. These 
findings indicate the complex molecular interaction 
between host’s immunity, genetics, and environmental 
factors in influencing gut microbiota and metabolites in 
IBD.

Conclusion
The study reveals that IBD patients have severe pertur-
bation of gut bacteria community composition, diver-
sity, metabolites, and associated functions and metabolic 
pathways compared to healthy individuals. This indi-
cates that the combined evaluation of metabolites and 
fecal microbiome can be useful to discriminate between 
healthy subjects and patients with IBD and consequently 

serve as therapeutic targets. However, the sample size of 
the study was small and was mainly adult UC patients, 
thus, further larger studies involving both UC ad CD 
patients of all age groups are required to examine the 
molecular signature of the differentially expressed metab-
olite and flora in the IBD group, since this could lead to 
the discovery of a novel diagnostic and therapeutic target 
of IBD. Again, this proof-of-concept approach prompts 
further investigation and detailed data mining of the cor-
relation between the significantly differential metagen-
omics and metabolomics.

Methods
Human subjects and sample collection
The study was approved by the Ethical Committee of 
Jiangsu University (2,012,258). All human subjects agreed 
to participate in the study and were made to sign consent 
forms.

To assess the alterations in the gut metagenomics and 
metabolomics profile of IBD patients, fecal samples were 
obtained from 30 adults, made up of 15 confirmed IBD 
patients and 15 healthy individuals in the Huai ’an Hos-
pital of Traditional Chinese Medicine, Jiangsu Province, 
China. All the 15 IBD patients were of the subtype UC, 
with 1 patient having an extra characteristic of colonic 
polyp () and 3 patients with chronic colitis (). The clinical 
diagnosis of the IBD patients was based on the consen-
sus opinions on diagnosis and treatment of IBD (Beijing, 
2018). The samples collected in this study were all in the 
remission stage of the disease. We matched healthy sub-
jects with IBD patients by age, lifestyle, disease history, 
etc. All IBD patients had no disease history except two 
patients with hypertension. The mean ages of the healthy 
controls and IBD patients were 52.6 ± 2.7  years and 
53.4 ± 3.6  years, respectively. The age, cholesterol level, 
blood glucose level, diabetes, hypertension, coronary 
heart disease, hepatitis, tuberculosis, traumatic surgery, 
poisoning, blood product transfusion history and other 
information of subjects in the two groups were basically 
the same.

Metagenomics analysis
Bacteria community and predicted functions analysis
The experimental process for the fecal analysis of the 
bacteria community and predicted functions (metage-
netic) involved six key stages (Additional file 1: Fig. S1A). 
From DNA extraction to computer sequencing, the sam-
ple quality was strictly controlled in each link to ensure 
the authenticity of sequencing data. For the combined 
analysis of 16S metabolomics, the process involved 16S 
rDNA amplicon sequencing of significantly different flora 
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and significantly different metabolites, followed by differ-
ent correlation analyses (Additional file 1: Fig. S1B).

OTU clustering, distribution, and species annotation
In order to study the species composition diversity of 
samples, the clean reads of all samples were clustered. 
Using UCLUST in QIIME (version 1.8.0) software, the 
clean reads were first de-chimerized, followed by cluster-
ing of the non-repetitive sequences into OTUs (opera-
tional taxonomic units) with 97% consistency, and then 
annotation of the representative sequences of OTUs 
using the Greenenes or Silva database. To avoid the 
interference caused by the difference of total sequenc-
ing quantity, some samples were leveled according to 
the minimum value of sequence number in each group, 
and the sequence number of all samples was randomly 
selected to a unified data volume for subsequent analysis. 
This process is illustrated in Additional file 1: Fig. S1C.

Test of the adequacy of sample size and reliability 
of microbial information from the data
In addition to the quality control checks on all samples, 
several tools were used to assess the ability of the sam-
ples to present a true reflection and reliable information 
on the microbial community variability between the two 
groups. A rarefaction curve was used to randomly select 
a certain amount of sequencing data from samples, count 
the number of species they represent, and build a curve 
based on the amount of sequencing data extracted and 
the number of corresponding species. The resultant 
curve, directly and indirectly, reflected the reasonabil-
ity/rationality of the amount of sequencing data and the 
richness of species in the samples respectively (Addi-
tional file  2: Fig. S2A). Moreover, a Shannon curve was 
constructed according to the microbial diversity index 
of the sequencing quantity of each sample at different 
sequencing depths. The flat Shannon curve produced 
indicated that the amount of sequencing data is large 
enough to reflect the vast majority of microbial infor-
mation in the sample (Additional file  2: Fig. S2B). Rank 
abundance curve was used to assess two aspects of the 
bacterial diversity, namely species abundance and species 
evenness. Results indicated an adequate abundance of 
species as reflected by the larger range of the width of the 
curve on the horizontal axis, and the evenness of species 
in the sample as indicated by the smoothness of the shape 
of the curve (Additional file 2: Fig. S2C). As an effective 
tool to investigate species composition and predict the 
species abundance in samples, a species accumulation 
curve was employed to further judge the adequacy of 
sample size and estimate species richness. This analysis 
did not only confirm the sufficiency of the sample size, 

but also the species richness on the premise of sufficient 
sample size (Additional file 2: Fig. S2D).

Metabolomics analysis
LC–MS/MS analysis of metabolomics
A high-resolution nontargeted metabolomics analysis of 
fecal samples was performed. Ultra-high performance 
liquid chromatography-quadrupole time-of-flight mass 
spectrometry (UHPLC/Q-TOF–MS) technique was used 
to detect metabolites in samples, which was matched 
with the retention time, molecular weight (molecular 
weight error < 25  ppm), secondary fragmentation spec-
trum, collision energy, and other information of metabo-
lites in the local database, The structure of metabolites in 
biological samples was identified, and the identification 
results were strictly checked and confirmed manually.

Metabolomics data processing
The raw MS data (wiff.scan files) were converted to 
MzXML files using ProteoWizard MSConvert before 
importing into freely available XCMS software. For peak 
picking, the following parameters were used: centWave 
m/z = 25  ppm, peak width = c (10, 60), prefilter = c (10, 
100). For peak grouping, bw = 5, mzwid = 0.025, min-
frac = 0.5 were used. CAMERA (Collection of Algo-
rithms of MEtabolite pRofile Annotation) was sued for 
annotation of isotopes and adducts. In the extracted ion 
features, only the variables having more than 50% of the 
nonzero measurement values in at least one group were 
kept. Compound identification of metabolites was per-
formed by comparing accuracy m/z value (< 25 ppm), and 
MS/MS spectra with an in-house database established 
with available authentic standards.

Combined analysis of 16S metabolomics (intestinal 
microbiological association analysis)
After 16S rDNA amplicon sequencing and analysis of 
fecal metagenomics and metabolomics, intestinal micro-
biological association analysis was also performed. This 
constitutes data in-depth mining, which helped to fur-
ther depict the association or correlation hidden in 
the data set. The association analysis between 16S and 
metabolism used a statistical algorithm to find the asso-
ciation between the three significantly different flora and 
89 significantly different metabolites.

The relative abundance (LEfSe LDA > 2 and P-value < 0.05) 
of three flora with a significant difference at genus level and 
the expression of 89 metabolites with significant difference 
(VIP > 1 and P-value < 0.05 of t-test) obtained by metabo-
lomics analysis in all experimental samples were sorted 
in a table as the input file for subsequent analysis. Spear-
man statistical method was used to analyze the correlation 
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coefficient between significantly different flora and metabo-
lites screened in the experimental samples. Furthermore, 
matrix heat map, hierarchical clustering heat map, and cor-
relation network were analyzed in combination with R lan-
guage (R 3.4.2 Heatmap package) and Cytoscape software 
to explore the interaction relationship between flora and 
metabolites from multiple angles.

Statistical analysis
To confirm differences in the abundances of individual 
taxonomy between the two groups, STAMP software 
was utilized. LEfSe was used for the quantitative analy-
sis of biomarkers within different groups. To identify 
differences in microbial communities between the two 
groups, ANOSIM and ADONIS were performed based 
on the Bray–Curtis dissimilarity distance matrices. Other 
analyses performed on the metagenomics/metabolomics 
included PCA and multivariate statistical analysis using 
SIMCA Version 14.1, Pearson correlation analysis using 
CytoScape Version 3.5.1, and KEGG pathway analysis 
using R Version 3.5.1. P-value reflects the significant level 
of correlation and was defined by p < 0.05 as *, p < 0.01 as 
* *, p < 0.001 as * * *.
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Additional file 1: Figure S1. The 16S rDNA amplicon sequencing and 
data analysis flow chart A: 16S rDNA amplicon sequencing technology 
flow chart; B: Combined 16S rDNA amplicon sequencing of significantly 
different flora and significantly different metabolites; C: Data analysis 
process.
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data reliability of microbial information; A: Rarefaction curve reflecting the 
rationality of the data and the richness of species in the sample; B: Shan-
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to reflect the vast majority of microbial information in the samples; C: Rank 
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