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Abstract 

Background:  Campylobacteriosis represents a global public health threat with various socio-economic impacts. 
Among different Campylobacter species, Campylobacter jejuni (C. jejuni) is considered to be the foremost Campylobac-
ter species responsible for most of gastrointestinal-related infections. Although these species are reported to primarily 
inhabit birds, its high genetic and phenotypic diversity allowed their adaptation to other animal reservoirs and to the 
environment that may impact on human infection.

Main body:  A stringent and consistent surveillance program based on high resolution subtyping is crucial. Recently, 
different epidemiological investigations have implemented high-throughput sequencing technologies and analyti‑
cal pipelines for higher resolution subtyping, accurate source attribution, and detection of antimicrobial resistance 
determinants among these species. In this review, we aim to present a comprehensive overview on the epidemiol‑
ogy, clinical presentation, antibiotic resistance, and transmission dynamics of Campylobacter, with specific focus on 
C. jejuni. This review also summarizes recent attempts of applying whole-genome sequencing (WGS) coupled with 
bioinformatic algorithms to identify and provide deeper insights into evolutionary and epidemiological dynamics of 
C. jejuni precisely along the farm-to-fork continuum.

Conclusion:  WGS is a valuable addition to traditional surveillance methods for Campylobacter. It enables accurate 
typing of this pathogen and allows tracking of its transmission sources. It is also advantageous for in silico charac‑
terization of antibiotic resistance and virulence determinants, and hence implementation of control measures for 
containment of infection.
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Introduction
The Campylobacter genus has approximately 57 spe-
cies and some of these species are of clinical and veteri-
nary relevance [1]. Among these species, thermophilic 
Campylobacter including Campylobacter jejuni, are 
the most common causative agents of campylobacteri-
osis. Other emerging Campylobacter species, such as C. 
sputorum, C. upsaliensis, C. ureolyticus, C. lari, and C. 
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hyointestinalis also contribute to a wide range of gastro-
intestinal diseases [2]. Campylobacter is a Gram-nega-
tive bacillus with a characteristic spiral shape and polar 
flagella that propel the cells in a corkscrew-like fashion 
[3]. They have an optimal growth between 37 and 42o C 
[4]. C. jejuni colonizes the gastrointestinal tract of most 
warm-blooded animals as commensals [5]. Chickens are 
reported to be one of the main sources of infection to 
humans. However, recent reports have also highlighted 
the role of wildlife and the environment (e.g. soil and 
water) in disease transmission [6]. The prevalence of 
Campylobacter infections is a critical global health con-
cern. The World Health Organization (WHO) declared 
that Campylobacter species are responsible for 96 mil-
lion cases of enteric infection worldwide [7]. The Euro-
pean Union (EU) tagged campylobacteriosis as the most 
reported zoonotic infection in 2020, responsible for 
over 60% of all documented cases [8]. The clinical pres-
entations of C. jejuni-mediated infection vary from self-
limiting diarrhea and abdominal pain to more serious 
extraintestinal infections [9].

Several molecular subtyping approaches (i.e., ampli-
con-based typing, sequence-based typing, and restric-
tion-based typing) have been implemented to investigate 
the epidemiology of C.  jejuni [10]. However, systematic 
surveillance and epidemiological studies of C. jejuni are 
burdensome because of the sporadic nature of Campylo-
bacter infections and the low discriminatory resolution 
of the traditional subtyping methods [10]. Thus, there is 
a demanding need for developing rapid subtyping meth-
ods with higher discrimination to track outbreak-causing 
lineages, predict antimicrobial resistance, determine 
accurate source attribution, and identify transmission 
dynamics. Whole genome sequencing (WGS) is a cut-
ting-edge analytical method that enables reliable iden-
tification and characterization of foodborne pathogens. 
It can be used to tackle the challenges of the traditional 
molecular subtyping approaches. For example, WGS 
enabled the representation of global Campylobacter iso-
lates and provided new means to detect disease-causing 
variants and host-related risks [11]. WGS opened new 
frontiers to explore the epidemiology of C. jejuni in pop-
ulations, its capabilities for host adaptation, and its trans-
mission from animal reservoirs to humans. Moreover, in 
the light of WGS, antimicrobial resistance (AMR) deter-
minants can be predicted taking into consideration their 
composite transmission dynamics [12].

In this review, we highlight the impact of campylo-
bacteriosis on human health, transmission of C. jejuni 
from animals to humans, genomic plasticity, and rel-
evant information on epidemiological surveillance and 
antibiotic resistance. We will compare the performance 
of traditional techniques with that of whole genome 

sequencing in addressing different epidemiological ques-
tions related to C. jejuni.

Impact of campylobacter on human health
Compared to other gastrointestinal pathogens, Campylo-
bacter is highly infectious with an infective dose of 500 
to 800 organisms for C. jejuni [13]. Although most of the 
infections caused by C. jejuni to humans are observed as 
isolated cases, outbreaks can take place [14]. Campylo-
bacter infection varies from a self-limiting disease to seri-
ous extraintestinal infection. The most frequent clinical 
symptoms of campylobacteriosis are unspecific includ-
ing fever, abdominal cramps, general malaise, muscle 
pain, diarrhea, and acute uncomplicated enterocolitis. 
Chronic gastrointestinal complications of Campylobacter 
infection include irritable bowel syndrome (IBS), inflam-
matory bowel disease, functional dyspepsia, and colitis 
[15]. While the disease is typically mild in healthy adults, 
severe and extended course of the disease, including bac-
teriemia, is a potential threat to young children, elderly 
adults, and immunocompromised patients [16].

Campylobacter infection and post-infection complica-
tions are quite rare. Nevertheless, many of these com-
plications have a worse prognosis than the acute disease 
itself. The intensity of symptoms is thought to be affected 
by co-infection with another foodborne bacteria [17]. 
The most important extraintestinal complications are 
bacteremia, meningitis, hepatitis, endocarditis, and pul-
monary infection [9]. The evolution of Campylobacter 
infections to a critical systemic illness, resulting in sepsis 
and death, is remarkably uncommon with a case-fatality 
rate of 0.05 in every 1000 infections [18]. Guillain–Barre 
syndrome (GBS) is a rare autoimmune neurological dis-
order in which peripheral nerves are demyelinated [19]. 
C. jejuni infection is the most common preceding infec-
tion and was reported in about 30% of GBS cases [19]. 
Specific C. jejuni serotypes have been associated with an 
increased risk of GBS (capsular types HS19, HS2, HS41, 
HS1/44c, HS4c, HS23/36c) [19]. Not all patients with 
cross-reactive antibodies develop neurologic manifes-
tations. This can be explained by host determinants of 
post-Campylobacter GBS, particularly human lympho-
cyte antigen type [20]. The clinical isolate 81–176 of C. 
jejuni may be involved in development of colorectal can-
cer due to the cytolethal distending toxin [21].

Zoonotic transmission of Campylobacter jejuni: one 
species, different hosts
Campylobacter is primarily a zoonotic disease-causing 
bacterium [13]. Poultry are the main natural reservoirs, 
especially for C. jejuni, with a cecal content of up to 
1 × 108  CFU/g [22]. By contaminating the carcass and 
surviving processing in slaughterhouses, C. jejuni can be 
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transferred to humans via undercooked chicken meat or 
through cross-contamination of other foodstuffs at the 
kitchen [23]. Contaminated water, milk, and dairy prod-
ucts are other sources of infection [24]. In addition, C. 
jejuni and other Campylobacter species are frequently 
found in other animal reservoirs, in up to 90% of cattle, 
85% of pigs, and 17.5% of sheep and goats [9]. Cattle iso-
lates are usually clustered in C. jejuni clonal complexes 
(CC) CC-21, CC-45, CC-48, CC-42, CC-61 and CC-206 
[25].

Although cross contamination of food represents the 
most common source to contact Campylobacter, differ-
ent reservoirs of human campylobacteriosis may poten-
tially play a role in the epidemiology and transmission of 
Campylobacter. Other unconventional routes of trans-
mission of Campylobacter spp. are surface water, pets, 
and wild birds [26]. Surface water accounts for a sig-
nificant number of human cases. Contamination of sur-
face water with wild animal feces and agricultural waste 
makes water a collection vessel of different Campylo-
bacter strains from various hosts [26]. Pets were found 
to cause considerable number of human cases where 
the transmission of Campylobacter can be bi-directional 
from owners to pets and vice versa. Pets may acquire 
infection in parallel with their owners from a common 
source [26]. While a genomic characterization and pro-
filing of C. jejuni showed a partial overlap between iso-
lates from livestock, pets, and clinical cases, isolates from 
pets showed specific genomic profiles. Thus, pets can be 
a potential reservoir for C. jejuni [27]. Wild birds acquire 
C. jejuni from contaminated water, refuse dumps, and 
waste from animal farms, pets, and humans [28]. Their 
body temperatures, in addition to foraging and breed-
ing habits, enable wild birds to be potential reservoirs 
and spreading routes of Campylobacter [28]. Some stud-
ies detected antibiotic resistant C. jejuni in wild birds in 
many geographical locations, which poses a concern in 
urban areas and agricultural farms with increased wild 
birds population [29]. Other studies showed that food 
and human C. jejuni isolates differed from those of wild 
birds [30]. Other environmental habitats such as soil 
are directly or indirectly implicated in human campylo-
bacteriosis [31]. Intriguingly, Campylobacter can be also 
transmitted through flies to chicken flocks and possibly 
to humans [32].

Although it has strenuous growing conditions in the 
lab, C. jejuni acquired resistance to a plethora of stress-
ors, such as low pH, temperature variability, oxidative 
stress, osmotic pressure, and antimicrobials [33]. These 
mechanisms enable C. jejuni to survive and transmit 
between diverse hosts [33]. Tolerance to environmen-
tal stressors is frequent among disease-causing lineages 
and can result in more adapted isolates, with an impact 

in the general epidemiology of C. jejuni [33]. Among 
the resistance mechanisms to environmental stressors 
are the transformation into a viable non culturable state 
(VBNC), biofilm formation, and mutations specific to 
certain lineages [33, 34]. Some of the host-generalist and 
host-specific strains of C. jejuni were proved to survive in 
aerobic conditions and under oxidative stress [35].

Mechanisms underlying genomic plasticity and host 
adaptation
Pan-genome is a term used to describe the entire gene 
collection identified in a species. The term encompasses 
two classes: core genome and accessory genome [36]. 
The core genome represents the set of genes present in 
every isolate of the species and carries out the necessary 
cellular functions [36]. The accessory genome constitutes 
the variable dispensable genome acquired for adaptation 
and is present only in a few strains or even unique to one 
strain. Pan-genomic studies highlight the marked varia-
tions of bacterial genomes between different genera and 
species and even between different strains of the same 
species. These variations can be referred to as genomic 
plasticity [37].

Almost all bacterial genomes have mosaic structures 
that are assembled from different DNA segments dur-
ing evolution and adaptation [38]. The exchange of DNA 
between bacterial cells occurs via horizontal gene trans-
fer (HGT) either by conjugation, transformation, or 
transduction [38]. While plasmids and conjugative trans-
posons mediate conjugation, phages that infect bacterial 
cells mediate transduction [38]. Transformation, on the 
other hand, occurs when naturally competent bacteria 
take up extracellular DNA from the environment [38]. 
The genome of C. jejuni is relatively small, however, it is 
characterized by high variation even at the strain level 
[31]. C. jejuni is naturally competent as it uses a DNA 
uptake system called type II secretion system to trans-
port foreign extracellular DNA to the cytoplasm [5]. To 
integrate the homologous DNA into the chromosome, C. 
jejuni uses RecA recombinase, a protein that promotes 
homologous recombination [5].

A recent study elucidated the role of the chicken gut 
environment, particularly that of the ceca, in provid-
ing suitable conditions for recombination to occur [39]. 
The results suggested that increased HGT in chicken 
gut promotes the genetic diversity and hence the adapt-
ability of C. jejuni to the constantly challenging gut 
environment [39]. The exchange of DNA between bac-
terial cells contributes to bacterial adaptation to a wide 
range of environmental conditions and to the coloniza-
tion of multiple niches. Moreover, it plays an essential 
role in the evolution of antibiotic resistance and bac-
terial virulence [38]. When comparing the pattern of 
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genetic variations observed in human pathogenic iso-
lates to that of poultry isolates belonging to the same 
clonal complex, evidence is further supporting that 
host-specific mutations develop within certain hosts 
[5]. Although host specialists are mainly found in only 
one host species while host generalists are commonly 
associated with multiple hosts, host specialists have 
been recently shown to infect more than one definite 
host [40, 41]. This host adaptation was recently sup-
ported by Nennig et al. by implementing different typ-
ing schemes based on WGS gene-by-gene approach. 
They concluded that some C. jejuni lineages have 
clonally expanded and can colonize or infect multiple 
hosts as they show adaptation to different niches [42]. 
Remarkably, a recent study has found that host gener-
alist lineages are better equipped to withstand hostile 
environmental conditions compared to host specialists, 
but this needs to be further characterized at the molec-
ular level [33]. To provide better insights into the emer-
gence of generalists, Woodcock et  al. investigated the 
role of genomic plasticity in the coexistence of gener-
alist and specialist Campylobacter lineages. They con-
cluded that the ecological generalism observed in some 
C. jejuni isolates reflected their genotypic and pheno-
typic plasticity and resulted in their rapid host adapta-
tion in different host environments [37].

WGS and Campylobacter jejuni genomic diversity
As mentioned in the previous section, certain lineages of 
C.  jejuni are specific to a particular host species that is 
related to host adaptation [40–43]. Another interesting 
example is the recent study conducted by Parker et  al. 
where two strains of C. jejuni colonizing guinea pigs 
were compared with well characterized Campylobacter 
strains [44]. They found that isolates from guinea pigs 
were of novel sequence type, distinct from other known 
Campylobacter strains, and had genes gain and loss in 
their genomes. This can further support that genomic 
divergence occurs as a result of host adaptation mecha-
nisms [44]. This extensive genome variability may play an 
important role in C. jejuni survival and host adaptation 
[31].

One application for WGS is studying bacterial genomic 
diversity accrued by animal colonization and human 
infection [45–48]. Golz et al. identified hybrid strains of 
C. jejuni where extensive gene transfer between the two 
species interfered with the analysis of species differentia-
tion and multilocus sequence typing (MLST) [49]. These 
adaptation mechanisms lead to the emergence of host-
associated genes or clusters of genes that can be resolved 
by WGS, which can be of a remarkable use to detect and 
infer host adaptation mechanisms in C. jejuni [50].

Epidemiological surveillance
Systematic surveillance of C. jejuni infection is a complex 
process due to high genomic diversity of the bacteria and 
interactions between different routes of transmission [31, 
43]. In the context of epidemiological surveillance of C. 
jejuni, bacterial subtyping is crucial to differentiate bac-
teria sharing certain genomic similarities and link them 
to the same source [51]. The distinction between epide-
miologically related incidents and sporadic cases requires 
high-resolution detection and typing techniques [10]. 
This is especially important to track both point source 
and diffuse outbreaks.

Molecular typing schemes
Consistent detection and identification of C. jejuni gen-
otypes is challenging due to their high variability. Addi-
tionally, traditional culture-based methods fail to detect 
bacterial variations [52]. They are time-consuming, 
low throughput, laborious, of low sensitivity, and may 
yield false negative results if the bacteria are in VBNC 
state [52]. Without accurate diagnostic tests to detect 
the presence of Campylobacter, precise differentiation 
and diagnosis of enteric illnesses caused by other bac-
teria including Salmonella, Shigella, and Yersinia can be 
challenging [53]. Campylobacter species, specifically C. 
jejuni, possess highly changeable physiology, metabo-
lism, and phenotypic diversity. Consequently, tradi-
tional detection methods are inadequate, inaccurate, and 
not sensitive enough [52]. Thus, research is now driven 
towards devising more accurate, cost- and time-effective 
detection methods, especially in the food industry where 
screening is crucial to prevent transmission [54].

Molecular typing schemes have been previously used 
for C. jejuni, including in outbreak investigations, host-
association, and population structure studies. Restriction 
fragment length polymorphism, ribotyping, PCR-based 
methods, pulsed-field gel electrophoresis, and anti-
gen gene sequence typing (as for flaA and porA genes) 
are considered as robust and reproducible genotyping 
methods in understanding the biology of C. jejuni. These 
typing methods can be implemented for different epide-
miological purposes, including for Campylobacter sub-
typing, phylogenetics, identification of outbreak-inducing 
lineages, and epidemiologic tracking [55]. Nonetheless, 
the aforementioned subtyping methods have limited 
discrimination capacity in epidemiological investiga-
tions and have several drawbacks such as poor discrimi-
natory power and incompatibility with high throughput 
applications [55]. MLST has been previously employed 
over the past decades as the gold standard subtyping 
method in studying relationships between Campylobac-
ter spp. strains, investigating the evolution, population 
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structure, and the molecular epidemiology of the disease 
and exploring the potential host reservoirs and host asso-
ciations [56]. MLST classifies isolates based on polymor-
phisms present in certain regions of housekeeping genes. 
Closely related sequence types are grouped under clonal 
complexes [57]. According to MLST genotyping, strong 
associations were found between C. jejuni host general-
ists and some clonal complexes (CC) including: ST-21, 
ST-48, ST-206, and ST-45 [41]. These lineages are causa-
tive sources of human diseases [58]. Despite broad geo-
graphical distinction between Campylobacter species, 
specific STs are found to be associated with infections in 
specific countries. For instance, ST-22 and ST-4526 were 
found in Finland and Japan, respectively, while ST-190 
and ST-474 emerged in New Zealand [36]. The compari-
son of geographically distinctive Campylobacter isolates 
is made possible by molecular typing and WGS. One 
example is the analysis of Campylobacter genomes in 
UK and North America [59]. The analysis concluded the 
clustering of these isolates based on variations of highly 
recombining genes while the isolates were geographically 
distant [59]. Another study compared C. jejuni isolates 
in Egypt and UK. CC21 isolates from the same country 
shared more accessory genome genes that were lineage-
specific; thus, isolates were geographically clustered [60]. 
Therefore, biogeographical identification of signatures 
from Campylobacter genomes can help improve campy-
lobacteriosis source attribution and implement reliable 
intervention strategies.

While MLST is superior to other classic typing meth-
ods in studying the population structure for source attri-
bution and the identification of transmission routes in 
outbreaks, it has several drawbacks [57]. MLST alone 
may not be sufficient to resolve closely related bacterial 
strains and, in this case, a specific MLST scheme should 
be devised [57]. Therefore, new tools and screening tech-
niques were needed for epidemiological surveillance of 
C. jejuni to address the limitations of the classic typing 
methods.

WGS in the surveillance of Campylobacter
WGS technologies are continuously evolving to sequence 
nucleotides at reasonable speed and low cost. As a result, 
more and more bacterial genomes are becoming available 
for analysis and routine surveillance and outbreak track-
ing are becoming more feasible [61]. Instead of conven-
tional genotyping, which is restricted to only some parts 
of the genome, WGS provides information on the entire 
genomic content of isolates. WGS can thus enhance 
microbial safety surveillance to help control foodborne 
outbreaks [61]. WGS is characterized by enhanced dis-
criminatory power at the strain level, also enabling the 
association of specific genotypes with phenotypes that 

are clinically and epidemiologically relevant [62]. WGS 
based subtyping demonstrates several advantages over 
traditional genotyping methods, including in silico pre-
diction of antimicrobial resistance determinants, attribu-
tion of transmission sources and routes, and enhanced 
surveillance of food-borne pathogens [63–65]. Therefore, 
WGS serves as an effective measure for controlling and 
preventing foodborne infections [62]. This is especially 
demonstrated during infectious disease outbreaks where 
WGS was used for typing [62]. WGS paves the way to 
characterize the genomic diversity among Campylobac-
ter isolates; thus, improving decision making and inter-
vention to control outbreaks [10].

WGS and C. jejuni epidemiology
WGS‑based subtyping
WGS analysis can be applied in real time to investigate 
epidemiologically-linked campylobacteriosis cases show-
ing high similarities at the genomic level [66]. Coupling 
de novo assembly of genomes with a gene-by-gene analy-
sis can expand from the classic MLST scheme to the core 
genome MLST scheme [11] (cgMLST), based on the 
analysis of a large number of genes shared by most of the 
members of a given bacterial group. cgMLST typing is 
routinely used to align C. jejuni genes for the identifica-
tion of clonal complexes and has greater discriminatory 
power than conventional MLST, thus aiding in providing 
better insights into the origin of human campylobacteri-
osis cases [11].

A study by Cody et  al. performed the first real-time 
genomic epidemiological investigation using a hierarchi-
cal whole genome MLST approach [67]. Over 1000 loci 
were extracted using a BIGSdb Genome Comparator in 
PubMLST. These loci were compared against 1643 pub-
licly listed loci and complemented with a whole genome 
MLST analysis. The analysis aimed to identify diver-
sity within the detected clusters to allow for the identi-
fication of temporal links between clusters in seemingly 
epidemiologically unrelated cases [67]. Further support 
to these findings was a study by Fernandes et  al. where 
comparison of C. jejuni isolates against a reference non-
related population showed that most of the apparently 
sporadic cases belonged to a cluster with fewer than 8 
allele dissimilarities out of 1577 shared loci [68]. Another 
study used reference-based core-genome MLST analy-
sis to examine a chicken-associated outbreak in Aus-
tralia over 1271 loci, and found no more than one allele 
difference between the clinical isolates [69]. A study on 
the Walkerton outbreak in Canada indicated that four 
isolates were related on the clonal level and of limited 
variation on the genomic level. The isolates were differ-
ent from one another by 15 single nucleotide variations 
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and approximately 4 allele differences in a core genome 
scheme over 732 core loci [70].

WGS based source attribution
Source attribution of zoonotic diseases is defined as 
the assignment of the human clinical cases of infection 
to their reservoirs and transmission routes [71]. Differ-
ent source attribution methods have been developed for 
foodborne pathogens. These methods can be defined as 
either top-down or bottom-up approaches. Top–down 
approaches assign human cases to the sources of infec-
tion and aid in predicting the risk of food production ani-
mals and other sources for causing infections in humans, 
advancing intervention strategies and public health in 
general [71–74]. The data for these methods can be pro-
vided by epidemiological methods, microbiological sub-
typing based methods, or both together [71]. On the 
other hand, bottom–up approaches predict the number 
of human cases caused by each source by first analyz-
ing the contamination level and then moving upwards 
through the transmission chain [71]. The genetic analy-
sis of foodborne pathogens plays a pivotal role in source 
attribution. In terms of foodborne pathogens, population 
structure defines the systematic differences in allele and 
phenotype frequencies in populations and subpopula-
tions of a pathogen [75]. Consequently, probable risk 
factors and relative contribution of different sources can 
be determined. While source attribution depends on the 
accurate estimation of the frequency of different sub-
types in each host reservoir, it may be challenging for 
some organisms such as Campylobacter to find specific 
host associated markers as the population is not properly 
structured into differentiated clusters [76, 77].

One approach to study population genetics is micro-
bial genotyping of isolates from both human cases and 
possible sources in the food chain [77]. This approach 
depends on the bacteria being adapted to different hosts 
or ecological niches which leads to uneven distribution 
of sequence subtypes among host reservoirs [77]. These 
genomic signatures would help to understand C. jejuni 
evolution and track sources of human infection [76]. 
For proper source attribution, a typing method should 
be standard and valid to help reliable knowledge trans-
fer among laboratories working on the analysis [71]. 
Moreover, the method should also be automated with 
a reference data set allowing for the establishment of 
nomenclature within the microbial species [71].

To apply WGS in source attribution, there have been 
several successful attempts to develop algorithms that 
provide optimal discriminatory power and proper mod-
eling [73]. Recently, allelic variation has been analyzed 
using 15 host-segregating marker loci (including seven 
core genes, seven soft-core genes, and one accessory 

gene) derived from the pan-genome of C. jejuni reference 
strains [73]. These loci have been used in source attribu-
tion analysis as they retain high accuracy of attribution 
even between host specialist and generalist genotypes 
[73, 78, 79]. Six of the host-segregating loci encode hypo-
thetical proteins and the remaining loci are involved in 
metabolic activities, signal transduction, protein modifi-
cation, and stress response [73]. This typing method was 
reported to be of higher accuracy and segregation power 
than MLST [78]. It is advisable to use more than one 
molecular typing method for the investigation of Campy-
lobacter populations [80].

Source attribution based on microbial subtyping can be 
classified according to the computational modeling used. 
The model-based molecular attribution can be applied 
to assess interventions used to halt disease transmission 
from farms to retail outlets to final human consump-
tion (farm-to-fork) [74]. The differences in genotype 
frequency between various populations enables proba-
bilistic assignment of isolates to populations [77]. Models 
can be frequency-matching models or population genet-
ics models [71]. In frequency-matching models, subtype 
frequencies are compared and weighted assuming that 
subtypes are stable from their sources [71]. The popula-
tion genetics models are probabilistic, and the param-
eters are assumed to be unknown [71]. The comparison 
of the genomic data available for strains may infer the 
link between strains from human and different sources. 
Examples of current population genetics models avail-
able are the STRU​CTU​RE model and the Asymmetric 
Island Model [71]. STRU​CTU​RE is a model-based clus-
tering method designed to infer population structure 
and assign individuals to populations using genotype 
data [81]. STRU​CTU​RE estimates genotype frequencies 
in each host species based on all the isolates. It estimates 
the population of origin for isolates of unknown origin 
[81]. The principle of this model is to estimate the allelic 
frequencies in different populations and their admixtures 
using Bayesian approach [81]. Tracing the sources of 
human cases is a use case of this model without admix-
ture of the source strains. The strains should belong only 
to one of each population and each population should be 
of a specific source [71].

Antimicrobial resistance in Campylobacter
Although campylobacteriosis is typically self-limiting, 
with a short-duration, and rarely requires antimicrobial 
therapy, high-risk patients may receive an early antibi-
otic intervention to avoid serious complications [82]. 
Macrolides are the antibiotics of choice when treat-
ing C. jejuni infections and fluoroquinolones are used 
as an alternative therapy [83]. Tetracyclines are another 
alternative treatment for campylobacteriosis but not 
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commonly used in clinical practice. Severe systemic 
campylobacteriosis may be treated with intravenous 
aminoglycosides [84]. C. jejuni has intrinsic resistance 
to a wide range of antibiotics including penicillin, most 
of the cephalosporins, vancomycin, cotrimoxazole, and 
rifampicin [83]. Moreover, a growing number of Campy-
lobacter strains are developing resistance against qui-
nolones and macrolides which are critically valuable 
antimicrobials in managing human infections [83]. In 
the past decades, the rise of antimicrobial resistance has 
become a significant global concern in both developed 
and developing countries. Resistance to antimicrobials is 
acquired and are mainly disseminated among Campylo-
bacter strains via HGT and mutation-based mechanisms. 
Antibiotic-resistant strains are capable of modifying the 
antibiotic target sites, reducing cellular permeability to 
antibiotics, or hydrolyzing or effluxing antibiotic com-
pounds [83].

Role of animals and food in transmission of antimicrobial 
resistance
The role of animals in the spread and transmission of 
AMR in humans is evident by studies that correlated the 
emergence and clonal expansion of resistant C. jejuni 
strains with the dissemination of resistance genes among 
various lineages as revealed by the association between 
different clones and antimicrobial resistance [85–88]. 
One of the main sources of AMR transmission from 
animal to human is the use of antibiotics in agriculture 
and veterinary fields. How the antibiotics are selected 
for use in these fields depends on the animal species 
itself, whether farming is commercial or domestic, and 
the availability of the antimicrobials under strict legali-
zation work frame [89]. Multiple studies have detected 
AMR in C. jejuni not only in broiler products but also 
in livestock animals in different geographical locations 
suggesting their role as a probable source of clinically 
relevant antimicrobial-resistant Campylobacter spp. 
[90–92]. In an attempt to investigate the AMR genes 
transfer between bacterial isolates, a study explored the 
genomic determinants of AMR in C. jejuni isolated from 
humans, livestock, and sewage [93]. The results indicated 
the spread of some AMR determinants between Campy-
lobacter species and the niches from which they are iso-
lated. These study findings were in agreement with the 
results of resistome analysis obtained by Cobo-Díaz et al. 
[94]. A total of 39,798 publicly available Campylobacter 
jejuni genomes were studied, focusing on their sequence 
types and resistome profiles. These studies highlighted 
the association between the use of antimicrobial agents 
in veterinary settings, particularly poultry produc-
tion, and the subsequent spread of AMR genes between 

Campylobacter isolates residing in humans, animals, and 
environment.

AMR and WGS
WGS analyses have served as a powerful tool for the 
accurate characterization and prediction of AMR within 
members of the Campylobacter genus [95–97]. In 
Campylobacter, antimicrobial resistance develops from 
either spontaneous mutations, acquisition of AMR genes, 
or both [83]. WGS is successfully applied to detect puta-
tive gene mutations that result in resistant phenotypes. 
It can also detect acquisition of DNA sequences associ-
ated with antibiotic resistance. The prediction can be 
further improved by verifying resistance markers and 
constructing a reliable pipeline. Several databases are 
available to detect AMR genes based on WGS technol-
ogy such as ResFinder [98], Resfams [99], ARG-ANNOT 
[100], CARD [101], or NCBI AMRFinder [102]. Jointly 
with comparative genomic studies, the data obtained can 
unravel much about the unknown mechanisms of resist-
ance and the role animals play in disseminating resistant 
strains in humans [95, 103].

Genome wide association studies and Campylobacter
Genome-wide association studies (GWAS) are increas-
ingly being implemented in microbial genomics to sta-
tistically associate genetic elements with particular 
phenotypes [104]. With the cost effective availability of 
WGS, GWAS can be performed to identify the genetic 
components of any measurable heritable phenotype in 
a hypothesis-free manner [75]. Microbial GWAS analy-
sis could reveal genes and mutations that are linked to 
antibiotic resistance, virulence, and host tropism [75]. 
GWAS is an example of a top-down approach because 
the genomic content of test and control groups is com-
pared and analyzed to identify genetic variation that is 
associated with a specific trait. Bacteria are characterized 
by unique population genetics that impose challenges in 
applying microbial GWAS analyses [75]. Among these 
challenges are the genetic content and its high diversity. 
Early GWAS depended on expensive genotyping chips 
with known DNA probes which became obsolete by 
time due to the plasticity of bacterial genomes. WGS is 
a cheaper and more comprehensive for production of full 
sequences fast and in high throughput [105].

Microbial GWAS analyses are divided into either phy-
logeny-based, non phylogeny-based, or can be a combi-
nation of both. Machine learning predictive models can 
also be applied [105]. GWAS that were applied to identify 
SNPs and k- mers in microbial genomes have identified 
mutations and genes associated with antibiotic resist-
ance, cancer, virulence and host preference [75]. Among 
the tools used for microbial GWAS are Scoary, TreeWAS, 
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bugwas, and PySEER [106–109]. C. jejuni population 
lineages are clustered into clonal complexes that share 
genetic elements. Not all of these genetic elements are 
correlated to particular phenotypes as some elements 
are passed through clonal descent and not associated 
with the phenotype of interest [104]. GWAS analysis 
of C. jejuni revealed the association of the cj1377c gene 
with survival where protein expressed by cj1377c gene 
is involved in C. jejuni respiration and formate metabo-
lism [104]. Another study showed that the gain and loss 
of the panBCD genes, encoding the vitamin B5 biosyn-
thesis pathway, is associated with rapid host adaptation. 
On one hand, vitamin B5 is present in cereals and grains, 
which are part of the chicken diet. On the other hand, it 
is found in a very low concentration in grasses on which 
cattle feed. The panBCD genes were found almost glob-
ally in cattle isolates as Campylobacter needs to produce 
the vitamin to persist in cattle. Thus, host generalism in 
Campylobacter lineages linked to agricultural niches 
is probable as panBCD genes persist in some isolates 
in chickens [110]. GWAS on C.jejuni isolates distin-
guished 28 genes that are significantly associated with 
highly prevalent and clinically related C. jejuni subtypes. 
Those genes are associated with iron acquisition, vita-
min B5 biosynthesis, catalysis, and transport [111]. WGS 
together with GWAS could reveal novel source attribu-
tion markers that differentiated C. jejuni isolates from 
UK and France [74]. GWAS helped determining marker 
genes, where the absence/presence or mutations were 
associated with the adaptation of certain lineages of C. 
jejuni to specific host niches [112].

Conclusion
The review summaries the WGS applications in the 
post genomic era to understand C. jejuni adaptation, 
antimicrobial resistance determinants, and transmis-
sion dynamics along the farm-to-fork continuum. The 
increasing use of WGS for epidemiological purposes can 
contribute to improve current surveillance programs. 
WGS provides high discriminatory resolution in com-
parison with traditional subtyping methods and will 
gradually replace these methods in surveillance studies. 
It should allow a more accurate identification of possible 
case clusters and resistome patterns to control and pre-
vent more cases of campylobacteriosis. WGS can drive 
“One Health” epidemiological investigations by provid-
ing an unprecedented level of data that can be used to 
describe emerging trends. It can guide the establishment 
of links between animal and human health and the envi-
ronment and clarify the direct or indirect role of Campy-
lobacter ecology in its transmission to humans.
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