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Abstract 

Background/aims  Crohn’s disease (CD) and intestinal tuberculosis (ITB) are gastrointestinal (GI) inflammatory 
disorders with overlapping clinical presentations but diverging etiologies. The study aims to decipher CD and ITB-
associated gut dysbiosis signatures and identify disease-associated co-occurring modules to evaluate whether this 
dysbiosis signature is a disease-specific trait or is a shared feature across diseases of diverging etiologies.

Methods  Disease-associated gut microbial modules were identified using statistical machine learning and co-
abundance network analysis in controls, CD and ITB patients recruited as part of this study. Module reproducibility 
was reinvestigated through meta-network analysis encompassing >5400 bacteriomes and ~900 mycobiomes. Sub-
sequently, >1600 Indian gut microbiomes were analyzed to identify a central-core gut microbiome of 46 taxa, whose 
abundances aided in the formulation of an India-specific Core Gut Microbiome Score (CGMS) to measure the degree 
of core retention.

Results  Both diseases witness similar patterns of alterations in [alpha]-diversity, characterized by a significant reduc-
tion in gut bacterial (i.e., bacterial/archaeal) diversity and a concomitant increase in the fungal [alpha]-diversity. Spe-
cific bacterial taxa, along with the diverging mycobiome enabled distinction between the diseases. Co-abundance 
network analysis of these taxa, validated by integrated meta-network analysis, revealed a ‘disease-depleted’ module, 
consistent across multiple cohorts, with >75% of this module constituting the central-core Indian gut microbiome. 
CGMS robustly assessed the core-microbiome loss across different stages of gut inflammatory disorders, in Indian 
and international cohorts.

Conclusions  While the disease-specific gain of detrimental bacteria forms an important component of gut dysbiosis, 
loss of the core microbiome is a shared phenomenon contributing to various GI disorders.
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Background
The gut microflora regulates a myriad of gut immuno-
logical processes, keeps a check on pathobiont expansion 
and forges dynamic interactions with the host physiologi-
cal machinery, thereby acting as a fulcrum of gut homeo-
stasis. Dysbiosis of the gut bacterial, archaeal and fungal 
communities has been strongly implicated in gut inflam-
matory disorders like inflammatory bowel diseases (IBD) 
[1–8].

IBD is a debilitating, chronic inflammatory disorder 
of the intestine, constituting Crohn’s disease (CD) and 
ulcerative colitis (UC). It is a multifactorial disorder 
caused by a dysregulated immune response against the 
commensal microbiota, potentially triggered by environ-
mental cues. Another such chronic inflammatory disease, 
but with an infectious etiology is intestinal tuberculosis 
(ITB)-an extra-pulmonary form of TB. With diverging 
etiologies, ITB and CD have overlapping clinical, patho-
logical, radiological, and endoscopic manifestations 
[9, 10]. This poses a diagnostic dilemma in developing 
nations that are endemic to infectious diseases like ITB 
and are now witnessing a surge in lifestyle-associated 
non-infectious diseases like CD. Even though the gut 
bacterial and fungal communities have been extensively 
profiled in patients with CD, there are no reports of bac-
terial and fungal dysbiosis in intestinal tuberculosis. A 
recent report by He et.al., highlighted differential gut 
bacterial dysbiosis signatures associated with mucosa-
associated microbiota in the two diseases, leaving a void 
for characterization of the dysbiosis in the less invasive 
luminal (faecal) stream [11, 12].

The present study aims to decipher ITB-associated 
alterations in the composition of gut bacteriome/archae-
ome and mycobiome and compare it with CD-associated 
dysbiosis. Through analysis of dysbiosis signature in the 
two disorders, we intended to elucidate the gut microbial 
modules specific to the disease type and the ones com-
mon between the disorders, despite their diverging eti-
ologies. Besides identifying disease-specific microbiome 
alterations in bacteriome and especially the mycobiome, 
we observed a specific co-abundant microbiome-module 
depleted in both diseases, that was consistently repro-
duced across multiple cohorts. Interestingly, a panel of 
46 members of this microbiome module (including 28 
species-level taxa) were prevalent (detected in at least 
70% of the samples) and occupied central positions in the 
gut microbial community of apparently healthy individu-
als collated from several Indian cohorts. This enabled the 

identification of an Indian core gut microbiome, which 
led to the formulation of a Core Gut Microbiome Score 
(CGMS) that quantitatively assesses the extent of reten-
tion of this core in individuals.

Methods
Study cohort and sample collection
Patients with a confirmed diagnosis of ITB or CD were 
recruited prospectively at the IBD clinic, All India Insti-
tute of Medical Sciences, New Delhi. The patients were 
diagnosed with CD based on a combination of clinical, 
endoscopic and histological features as per the European 
Crohn’s and Colitis Organization (ECCO) guidelines [13, 
14]. Patients less than 18  years of age, with a history of 
anti-tubercular therapy (ATT), with co-existing infec-
tion (pulmonary/urinary), HIV seropositivity, and preg-
nant or lactating females, were excluded. The diagnosis 
of ITB was made in cases where the following criteria 
were present (1) caseating granulomas on biopsy, (2) 
presence of acid-fast bacilli by AFB staining or culture, 
(3) demonstration of active TB at an extra-pulmonary 
site(s). For indeterminate query cases, an ATT was given 
to the patients who did not fall into the above categories. 
A patient was categorized as having ITB if the patient 
had clinical and endoscopic/radiologic response to ATT 
(Paustian’s criteria with Logan’s modification) with a min-
imum follow-up of 12  months after completion of ATT 
and a diagnosis of CD was made if the patient showed 
no response, or worsened after initial improvement with 
ATT trial and subsequently showed a clinical and/or 
endoscopic response to oral steroids/CD specific therapy 
[15]. 10 g of faecal samples from healthy controls (n = 17) 
and from patients with CD (n = 20) and ITB (n = 20), were 
collected in sterile stool vials, homogenized, aliquoted 
and stored at −80 °C, till further processing. The experi-
mental protocols were approved by the institutional eth-
ics review board of the All India Institute of Medical 
Sciences, New Delhi (Ref. No. IECPG/484/29.8.16).

DNA extraction and sequencing
For bacterial microbiome analysis, the total DNA was 
isolated from faecal samples using the protocol previ-
ously published by Bag et al. [16], with minor modifica-
tions. Briefly, frozen samples were thawed, and biopsy 
and faecal samples were weighed precisely to 2  mg and 
200  mg respectively. Samples were homogenized using 
glass beads-2.3 mm (Biospec, USA). This was followed by 
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enzymatic cell lysis using lysozyme (10  mg/mL) (Sigma 
Aldrich), mutanolysin (25 KU/mL) (Sigma Aldrich) and 
lysostaphin (4 KU/mL) (Sigma Aldrich) at 37 °C for 1 h. 
Post-incubation samples were subjected to treatment 
with 4  M guanidine thiocyanate (Sigma Aldrich) and 
10% N-lauryl sarcosine (Sigma Aldrich), before incuba-
tion at 37 °C for 10 min and 70 °C for 1 h. This was fol-
lowed by mechanical lysis of cells by bead beating cycles 
before supernatants were transferred to fresh tubes and 
subjected to protein removal. Nucleic acids were pel-
leted using ice-cold ethanol (96%) and centrifugation 
at 14,000 g for 10 min at 4 °C. The final precipitation of 
DNA was achieved by adding 3 M sodium phosphate and 
1 mL of 96% ethanol, subjecting the pellet to centrifuga-
tion at 14,000 g for 10 min at 4 °C.

Isolation of DNA for characterization of fungal mem-
bers through ITS1 sequencing was performed by using 
an initial lyticase treatment (500U), followed by extrac-
tion using QIAamp Fast DNA Stool Mini Kit, using 
the manufacturer’s instructions. Extracted DNA was 
sequenced using the Illumina MiSeq platform, following 
which high-quality reads were obtained by using Trim-
momatic v0.38 to remove adapter sequences, ambiguous 
reads and low-quality reads (reads with more than 10% 
quality threshold (QV) < 20 Phred score).

Computation of bacteriome/archaeome (bacterial & 
archaeal abundance) and mycobiome (fungal abundance) 
profiles
Raw sequence reads were processed using QIIME2 ver-
sion 2022 [17]. Forward and reverse paired-end reads 
were denoised, demultiplexed and subjected to chi-
mera removal using the DADA2 plugin of QIIME2 [18]. 
DADA2 was utilized to generate amplicon sequence vari-
ants (ASVs) for the 16S (for Bacteriome and Archaeome) 
and ITS (Internal Transcribed Spacer; for Mycobiome 
datasets) sequences for each sample. The species and 
genus-level classification of each of the 16S-derived (Bac-
teroiome/Archaeome) representative sequences were 
then obtained using the SPINGO classification tool [19]. 
For the ITS data, this classification was performed using 
the ‘sintax’ taxonomy classification tool implemented 
within the vsearch annotation pipeline with the UNITE 
database as the reference [20].

The methodology for the assessment of α and 
β-diversity variations across the three groups has been 
summarized in Supplementary Figure  1. Shannon and 
Pielou’s evenness indices across the bacteriome and myc-
obiome datasets were determined using the ‘diversity’ 
and ‘specnumber’ functions of vegan (version 1.00.15) 
package, respectively. These matrices were compared 

across three sample-types (controls, CD and ITB) using 
Kruskal–Wallis H-tests (using the kruskal.test function 
of the R programming interface), and p values indicative 
of significant variations in values obtained for pairwise 
comparisons across groups were computed using the 
Dunns’ tests (computed using the dunn.test function in 
R and p values corrected using Benjamini–Hochberg by 
setting the “method” argument to “bh”).

The beta diversity across the samples was investigated 
using three different distance measures, namely Kend-
all and Weighted-Jaccard. The abundance profiles were 
normalized using the Total Sum Scaling approach, that 
is counts for each taxa in a given sample divided by the 
total sum of all taxa in the sample.

For computing Kendall distances, the cor.fk function 
of the pcaPP package v2.0.2 was used to generate Kend-
all tau correlation matrix across the samples. The Kendall 
correlations were subsequently converted to Kendall dis-
tance matrix by using the following:

Weighted Jaccard distances were on the other hand 
computed as:

Each of the distance matrices captures different aspects 
of microbiome variations using different kinds of trans-
formation (as detailed in Ghosh et  al. [21]). For each 
distance measure, separate distance matrices were com-
puted for microbiome and mycobiome profiles.

For each distance and profile (microbiome and mycobi-
ome), the beta-diversity variations were then visualized, 
and the extent and significance of variations were investi-
gated using Principal Coordinate Analysis (PCoA). Prin-
cipal Coordinate Analysis was performed using the ‘ade4’ 
package v.1.7.17 of R. PCoA was performed separately 
for the four different distance measures, namely for the 
three distance measures (Kendall and Weighted Jaccard) 
applied for the two kinds of profiles (namely microbiome 
and mycobiome), resulting in 3 × 2 = 6 combinations. For 
each of the four plots, the separation between the three 
different groups were first visually investigated. Subse-
quently, the major PCoAs having significant variations 
across the three subject groups (that is the axes with the 
most significant splits), were compared using Kruskal–
Wallis H-test with pairwise comparisons between the dif-
ferent groups performed using Dunns’ tests (as described 
in the previous section).

Kendall DistanceMatrix

= as.matrix(1− cor. fk(t(abundances))/2)

Jaccard DistanceMatrix = as.matrix

((vegdist(abundance,method = “jaccard′′))
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Identification of diagnostic markers and differentially 
abundant taxa
Identification of taxonomic markers diagnostic of the dif-
ferent groups was identified using two parallel and com-
plementary approaches, namely Random Forest-based 
identification and identifying taxa associated with the 
taxa-abundance-derived Principal Coordinates having 
the most significant variations across the three groups of 
individuals (controls, CD and ITB). In the first approach, 
we utilized Random Forest to identify the top diagnos-
tic predictors discriminating between each of the three 
pairs of groups (Controls vs. ITB; Controls vs. CD; CD 
vs. ITB). The details of the approach are provided below. 
First, we created separate matrices containing the abun-
dances of all the species and genus levels separately for 
the gut microbiome and mycobiome profiles. Then for 
a given profile and a given pair of groups, we created a 
Random Forest (RF) classifier to classify the samples 
belonging to the two groups based on the microbiome 
and mycobiome level features (separate Random For-
est classifiers for microbiome and mycobiome). This was 
performed using the ‘randomForest’ function of the ran-
domForest package v4.6.14. For a given level (microbiome 
or mycobiome) and a given pair of groups (Controls vs. 
CD; Controls vs. ITB; CD vs. ITB), after the generation of 
these RF models, the features were then ranked based on 
their feature importance scores (i.e. the mean decrease in 
GINI across 500 iterations). Subsequently, based on these 
ranks, we generated multiple RF models considering a 
varying number of top features (e.g. top 10, 20, 30, 40, till 
250). The number of features for which the correspond-
ing RF models generated the highest AUC values was 
taken as the set of the most discriminatory (or diagnos-
tic) features for the classification of the two groups. After 
identifying the most diagnostic features for each pairwise 
group classification, we performed an additional varia-
tion to ascertain that these markers were the most diag-
nostic and reproducible and were not affected by biases 
in certain samples. For this, we performed 50 iterations, 
where in each iteration we selected 50% of the samples 
for training and the remaining 50% for testing. The objec-
tive was to ascertain that the AUC values observed in the 
overall models (taking all features) were similar even in 
the 50 iterations.

Understanding mutual relationships of biomarkers 
via network‑based approach in the current dataset 
and validating the same across global meta‑networks
For investigating the mutual co-abundance relationships 
between the above-identified set of markers specific for 
each subject group (Controls, ITB and CD), we utilized 
the permutation-renormalization bootstrap (ReBoot) 
approach [22], implemented within the R-based ‘ccrepe’ 

module v1.34.0 (using Kendall-tau as the correlation 
score). The methodology adopted for this investigation 
with the detailed protocol for validating the reproducibil-
ity of marker relationships in global meta-networks using 
multiple publicly available microbiome and mycobiome 
datasets (listed in Table  1) has been described below 
[23–37].

Reboot‑based co‑abundance network computation
The co-abundance relationships (Kendall-tau > 0) with 
FDR < =0.1 were identified and these relationships were 
represented as marker vs. marker adjacency matrix. 
This adjacency matrix was subsequently represented as 
a network, such that any marker having co-abundance 
relationships with at least one another marker was rep-
resented as a node and any two nodes having a mutual 
co-abundant relationship were connected by an edge. 
To create this network, we utilized the ‘igraph’ package 
(v1.35.0) and specifically the ‘graph_from_adjacency_
matrix’ function.

Validating reproducibility of marker relationships in global 
meta‑networks using multiple publicly available microbiome 
and mycobiome datasets
We defined meta-network as a graph of co-abundance 
relationships amongst taxonomic features that are 
inferred based on performing meta-analysis across multi-
ple studies. A meta-network contained the taxa as nodes. 
Two nodes were only connected by an edge if their abun-
dances showed a positive association based on a Random 
Effects Model with an FDR < =0.1 and consistency of 
greater than 70% The meta-analysis was performed using 
the random-effects model using the ‘metafor’ package 
(v2.0) and robumeta package (v3.8) of R.

Separate meta-analyses were performed to identify 
the intra-microbiome (focusing only on gut microbi-
ome profiles), intra-mycobiome (focusing only on gut 
mycobiome profiles) and mycobiome-microbiome co-
abundance associations (focusing on paired profiles 
with both gut microbiome and mycobiome data). For 
this purpose, we utilized 5437 gut microbiome pro-
files and 892 gut mycobiome profiles, encompassing 14 
studies (Table 1). For microbiome profiles, we predomi-
nantly included datasets from studies in the Indian 
population [23–26]. These included a total of 1617 gut 
microbiome profiles from India. We also included 3559 
gut microbiome profiles from healthy individuals from 
another population-level cohort from the neighboring 
country China [30]. One of these datasets also had gut 
microbiome profiles from diverse Asian populations 
from Japan and India [9]. This same dataset also con-
tained matched gut mycobiome profiles (n = 97). We 
included two more datasets from the EU focusing on 
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IBD and IBS (irritable bowel syndrome) that also con-
tained both gut microbiome and mycobiome profiles 
[23, 24]. The paired gut microbiome and mycobiome 
profiles were utilized for meta-analyses investigating 

microbiome-mycobiome associations. This set of myc-
obiome profiles was supplemented with three more 
datasets from the Human Microbiome Project v2, 
India and China for investigating the intra-mycobiome 

Table 1  Microbiome and mycobiome datasets utilized in the present study for the network meta-analysis, Indian core gut 
microbiome assignment and for validation of core gut microbiome score

Dataset 
Reference 

Datatype 

Total Sample 

Nationality 

Purpose 

Microbiome Mycobiome 

Network 

Meta-

analysis 

Indian 

Core Gut 

Microbiom

e 

Core Gut 

Microbiom

e Score 

validation 

AIIMS 2021 

Kedia et al 

202123; 

Das et al 

201824

16S 162 0 India 

MicroDiab 

India 

Pinna et al 

202126; 

Alvarez et 

al 202125

16S 435 0 India 

LogMPie 
Dubey et 

al 201827 16S 874 0 India 

Dhakan DB 

2019 

Dhakan et 

al 201928 Shotgun 88 0 India 

Gupta A 2019 
Gupta et al 

201929 Shotgun 60 0 India 

PRJDB7616 
Pareek et 

al 201931

16S/ITS 58 58 India 

16S/ITS 39 39 Japan 

Liguori 2016 
Liguori et 

al 201632 16S/ITS 47 47 Italy 

PRJEB423575 

Jeffery et 

al 202034; 

Das et al 

202133

16S/ITS 115 144 Ireland 

HMP2 
Nash et al 

20135 Shotgun/ITS 0 390 US 

PRJNA439151 NA ITS 0 70 China 

PRJNA647266 
Hu et al 

202237 ITS 0 75 China 

He et al 
He et al 

201930 16S 3559 0 China 

PRJNA662173 

Jayasudha 

et al 

202036

ITS 0 69 India 

Halfvarson 

2017 

Halfvarson 

et al 

201745

16S 683 0 Sweden   

Lloyd-Price 

2019 

Lloyd-

Price et al 

20198

Shotgun/ 

16S 
1627 0 USA   

Hall 2017 
Hall et al 

201744 Shotgun 259 0 USA   

Franzosa 2018 

Franzosa 

et al 

201841

Shotgun 219 0 USA   

The respective purposes for which the study samples have been used, have been marked in blue
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associations [35]. Network edges identified within our 
current study cohort (as described in the previous step) 
that were also observed to be present in the three meta-
analyses performed in this step were identified as the 
core set of reproducible associations. All networks were 
visualized using the Cytoscape software [38].

Identification of an Indian core microbiome 
and computation of the core gut microbiome score (CGMS)
We collated 1617 gut bacteriome/archaeome from seven 
previous studies, especially focusing on Indian sub-
populations [24–29, 31, 39]. The core gut taxa within 
the Indian population were identified using two proper-
ties—prevalence and centrality. The prevalent taxa were 
identified as those that were present in at least 70% of the 
samples in at least four of the seven datasets. To identify 
the central taxa, we built a meta-network based solely on 
the seven Indian studies. Within this network, taxa that 
were in the 70 percentiles in terms of their degree of cen-
trality were identified as the central taxa. Taxa belonging 
to both the lists of the prevalent taxa as well as the cen-
tral taxa were identified as the core gut taxa within the 
Indian population.

Once the core gut microbiome was identified, the core 
gut taxa were then sorted in a descending order based 
on their meta-network degree centrality. For any given 
gut microbiome dataset (irrespective of whether the gut 
microbiome belonged to the above list of 1617 datasets 
investigated), the list of all core gut taxa (as identified) 
that were detected in the dataset were identified, ranked 
across samples and then rank-scaled from 0 to 1 using 
the below formula:

The core gut microbiome score for the various datasets 
was then calculated as:

Comparison of CGMS with other indicators of gut health 
in multiple cohorts utilized for this study
For each gut microbiome, we computed four additional 
measures of gut health, namely Shannon Diversity, 
Dysbiosis Score (introduced by Lloyd-Price et  al. [8]), 
Kendall Uniqueness (introduced by Ghosh et  al. [21]) 
and the Gut Microbiome Health Index (introduced 
by Gupta et  al. [40]). The algorithm for the computa-
tion of each of the later three indices are described in 
the respective studies. For each cohort, microbiomes 
were either categorized as control or diseased (group-
ing multiple disease categories together). Comparison 
of each of the five indices (including CGMS) were per-
formed using Mann–Whitney tests (as described pre-
viously). The consistency of the associations of these 
indices with health across cohorts was compared.

Investigation of inferred metabolic functionalities
Computation of inferred metabolite profiles
The inference of metabolic profiles for each gut micro-
biome was performed using methods as described in 
previous studies [41, 42]. We utilized taxa-metabolic 
function maps containing the experimentally vali-
dated metabolic-functional profiles (i.e. the production 
and consumption patterns) of ~300 metabolites from 
992 species-level taxa as 0–1 information (1: detected 
and 0: Not detected). These were collated from mul-
tiple repositories/studies [43, 44]. Using this map, 
given the abundance of a gut microbiome, the meta-
bolic functional profile can be inferred by performing 
an inner multiplication of the abundance profile of the 

The rank scaled abundance of a given taxa ‘j′ in sample ‘i′ =
((rank(j in i)−min(rank(j across all i)))

((max(rank(j across all i))−min(rank(j across all i)))

For a givenmicrobiome k ,CGMS =

∑

summation across all detected core taxa ‘m’

Rank Scaled Abundance of taxa ‘m’ in ‘k ’

∗ Percentile rank of ‘m’ in degree centrality in themeta

− network identified above
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overlapping species with this taxa-function map. Com-
puted in this manner, the abundance value of each met-
abolic function denotes the cumulated abundance of all 
taxa experimentally validated to have the given meta-
bolic function.

Diversity analysis across different groups
Normalization was performed using Total-Sum-Scal-
ing. Principal Co-ordinate analysis (PCoA) of the meta-
bolic profiles of the 57 gut microbiomes was performed 
using the Bray–Curtis distance measure (using vegan 
version 2.6–8 package in R). We then performed PER-
MANOVA (using Euclidean distances between sam-
ples using the top 2 PCoAs), to judge the significance 
of the separability of the three groups. The distribu-
tion of the embeddings, PCo1 and PCo2 was visualized 
shown using a cowplot (using cowplot package, version 
1.1.3 in R). The significance in difference between the 
PCoA1 values across each group have been investigated 
through a Mann–Whitney test using the stats (version 
3.6.2) package in R.

Correlating the microbiome‑specific inferred metabolite 
profiles with the PCo1 values
The inferred metabolite profiles were divided into two 
categories, namely production profiles and consump-
tion/degradation profiles. Spearman correlation was then 
used to computed the association between the inferred 
metabolite profiles (both categories) and PCo1 was 
using the stats (version 3.6.2) package in R. Significantly 
(q-value < =0.05; q-value obtained after adjustment using 
Benjamini–Hochb) positive (Spearman-Rho > 0) and 
negative (Spearman-Rho < 0) correlations were identified 
and were plotted and visualized as volcano plots, plotted 
using the ggplot package of R.

Replicative investigation of the inferred metabolite 
associations in six external previously investigated IBD 
cohorts
To validate the significantly enriched and significantly 
depleted metabolites in terms of production as well as 
consumption/degradation in Controls, a meta-analysis 
using Random Effect Model has been performed on the 
inferred metabolite profiles in six previously investigated 
global IBD cohorts [8, 32, 39, 45–47] of IBD patients and 
Controls.

Results
Patient demographics corresponding to the two disease 
cohorts
In our cohort of CD and ITB patients (n = 40; CD = 20 
and ITB = 20), the mean age of the patients with CD was 

42.55 ± 10.75 years, while patients with ITB had a mean 
age of 33.9 ± 11.80 years. Most patients with CD had ileal 
involvement (L1 phenotype) and stricturing B2 pheno-
type (50%), while the ITB patients predominantly had 
ileocaecal (40%) and ileocolonic (30%) involvement. The 
summary of the demographic and clinical details of the 
patient and control subjects are shown in Table 2.

Both diseases witness differential patterns of α and β 
diversity variations of the gut microbiome (bacteriome/
archaeome) and the gut mycobiome to controls
Subjects were categorized into three groups based on 
their clinical phenotypes—controls (non-CD and non-
ITB individuals), and patients with CD or ITB. Both CD 
and ITB showed a significant reduction in gut microbi-
ome (bacteriome/archaeome) α-diversity indices (Shan-
non Index and Pielou’s evenness index) when compared 
with controls, with evenness undergoing a more drastic 
reduction than the Shannon diversity metric (Fig. 1; see 
“Methods” section). This significant disease-associated 
reduction evenness was constant across three taxonomic 
levels (Amplicon Sequence Variants (ASVs), species 
and genus). Interestingly, no marked differences were 
observed between the bacterial α-diversities between 
CD and ITB (Fig.  1). The comparison of the α-diversity 
in the gut fungal community revealed that the ITB sub-
jects had significantly higher Shannon Indices and Pie-
lou’s Evenness Index when compared to the controls and 
CD patients across multiple taxonomic levels (Fig.  1). 
This indicates that both diseases are accompanied by 
shared alterations in the overall gut bacterial community 
structure, characterized by a decrease in the richness of 
the bacterial/archaeal members and the ITB-associated 
increase in the diversity and representation of the fungal 
members.

To further investigate the community variations, we 
then performed a series of Principal Coordinate Analyses 
(PCoAs) to find the variation patterns in the overall gut 
bacteriome/archaeome and mycobiome compositions 
across the three groups (see “Methods” section; Supple-
mentary Figure  1 for a pictorial summary). The PCoA 
plots at the gut microbiome level (bacteriome/archae-
ome) depicted a marked overlap between the CD and 
ITB samples, while the controls clustered separately from 
both diseases with significant variations noted across the 
first PCoA axes (PCo1) (Fig. 2A, B). At the gut mycobi-
ome level, however, the PCoA highlighted significant 
variations between the control and ITB samples, indi-
cating a distinct make-up of the gut fungal commu-
nity in the ITB patients, while the CD patients showed 
intermediate positioning between the controls and ITB 
patients (Fig. 2A, B). The pattern was consistent across all 
taxonomic levels and distance matrices (Supplementary 
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Table 2  Demographic and clinical details of healthy controls and patients with Crohn’s disease and intestinal tuberculosis

CD Crohn’s disease, ITB intestinal tuberculosis, HC healthy controls, BMI Body Mass Index, Veg vegetarian, non-veg non-vegetarian

Characteristics Crohn’s disease

Age, years, mean ± SD 42.55 ± 10.75

Sex, male, n (%) 13 (65.00%)

BMI, kg/m2, mean ± SD 21.26 ± 5.08

Current alcohol intake, n (%) 3 (15%)

Current smoker, n (%) 2 (10%)

Diet (veg:non-veg) 11:9

Disease duration (years ± SD) 4.5 ± 3.9

Phenotype (Montreal classification)

A1 (below 17 years) 1 (5%)

A2 (between 17 and 40 years) 10 (55.5%)

A3 (above 40 years) 9 (45%)

L1 (ileal involvement) 10 (50%)

L2 (colonic involvement) 4 (20%)

L3 (ileocolonic involvement) 5 (25%)

L4 (upper GI involvement) 5 (25%)

P (perianal involvement) 5 (25%)

B1 (nonstricturing, nonpenetrating disease) 6 (30%)

B2 (structuring disease) 19 (50%)

B3 (penetrating disease) 4 (20%)

Extra intestinal manifestations (EIMs) 4 (20%)

Intestinal tuberculosis

Age, years, mean ± SD 33.9 ± 11.80

Sex, male, n (%) 12 (60%)

BMI, kg/m2, mean ± SD 18.90 ± 3.299

Current alcohol intake, n (%) 2 (10%)

Current smoker, n (%) 3 (15%)

Diet (veg:non-veg) 1:1

Disease duration (years ± SD) 2.602 ± 4.34

Disease extent

Ileal disease 4 (20%)

Ileocaecal disease 8 (40%)

Ileocolonic disease 6 (30%)

Colonic disease 1 (5%)

Upper GI disease 1 (5%)

Extra intestinal manifestations (EIMs) 3 (15%)

Caseating granuloma 2 (10%)

Controls

Age, years, mean ± SD 39.91 ± 12.81

Gender, male, n (%) 7 (58.33%)

BMI, kg/m2, mean ± SD 20.72 ± 2.22

Current alcohol intake, n (%) 0 (0%)

Current smoker, n (%) 3 (25%)

Diet (veg:non-veg) 1:2
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Figures  2–6; Supplementary Table  1). The α and 
β-diversity analysis indicates that both diseases undergo 
shared microbial dysbiosis but with distinct disease-spe-
cific patterns emerging for the bacteriome/archeaome 
and fungal components.

Specific gut microbial members diagnostically distinguish 
disease‑associated dysbiosis and enable the distinction 
between CD and ITB
Next, we identified the taxa (or modules of specific taxa) 
that distinguished between CD and ITB and between the 
two diseases and controls, and the extent to which they 
contributed to the distinction. For this, we adopted the 

machine learning-based Random Forest classification 
approach, which not only identified the most discrimina-
tory markers for pairwise group classification using the 
entire dataset but also validated these markers using an 
iterative bootstrapped approach to preclude biases origi-
nating from outlier samples (see “Methods” section for a 
complete description of the methodology; Supplemen-
tary Figure  7 for a complete pictorial description). The 
diagnostic markers were assessed separately for the gut 
microbiome and mycobiome.

At the microbiome level, we identified the most dis-
criminatory taxonomic features (at genus and species 
level) achieving the highest diagnostic accuracy for 

Fig. 1  Disease alterations in gut alpha diversity show clearly opposing patterns at the microbiome and mycobiome levels. Comparison 
of Shannon Index and Pielou Evenness Index for gut microbiomes and the gut mycobiomes of the three subject groups (namely Controls, 
CD and ITB) at the taxonomic levels of OTU/ASV, Species and Genus. Pairwise comparisons between the different groups are denoted by bars 
between corresponding boxes with the associated corrected p values (FDR) given in the notation: @ 0.05 < FDR < =0.1; * 0.01 < FDR < =0.05; 
** 0.001 < FDR < =0.01, *** FDR < =0.001
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Fig. 2  ITB and CD indicate distinct patterns of microbiome- and mycobiome-level alterations with respect to the control group. A Principal 
Coordinate Analysis (PCoA) plots showing the variations of the Species-level Gut Microbiome profiles and Gut Mycobiome profiles of individuals 
belonging to the Control, ITB and CD groups. The PCoAs were performed using the weighted Jaccard distance measure. Species-level PCoAs 
obtained for the Kendall distance measure have been shown in Supplementary Figure 1. Similar plots for the other taxonomic levels using other 
distance measures are provided in Supplementary Figures 2, 3, 4, and 5. B Boxplot comparing the first species-level PCoA Axes obtained for the gut 
microbiome and mycobiome profiles obtained using the three different measures. Pairwise comparisons between the different groups are denoted 
by bars between corresponding boxes with the associated corrected p values (FDR) given in the notation: @ 0.05 < FDR < =0.1; * 0.01 < FDR < =0.05; 
** 0.001 < FDR < =0.01, *** FDR < =0.001
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pairwise discrimination between Controls vs. ITB (70 
features; top AUC: 94.5%), Controls vs. CD (50 fea-
tures; top AUC: 98.5%) and CD vs. ITB (10 features; 
top AUC: 76%), respectively (Fig. 3A, B). This indicated 
that while the microbiome alterations in the two gut 
inflammatory diseases were distinct from the controls, 
the disease groups also harbored subtle yet specific 
variations in their gut microbial community makeup. A 
similar pattern was also observed for the gut mycobi-
ome community. We identified 10 fungal features ena-
bling distinction between the controls and ITB group, 
and 30 fungal features discriminating the control vs. 
CD groups and the CD vs. ITB groups. The mycobi-
ome alterations had the best capability to distinguish 
between Controls vs. ITB (94.4% AUC), followed by 
Controls vs. CD (83.3% AUC) and CD vs. ITB (75.7%), 
reflecting the trends observed for the gut microbiome. 
These observations highlight that the gut bacteriome/
archaeome and mycobiome profiles couldn’t just reli-
ably distinguish between the patients (CD/ITB) and 
controls but also distinguished the diseases with appre-
ciable accuracy. This entire investigation identified a 
total of 85 gut bacteria and 37 gut fungal taxa at the 
species and genus level that could facilitate diagnosti-
cally distinguishing between at least one pair of the 
three sample groups. These taxa have been summarized 
in Fig. 3C and D.

The microbiome taxa that could distinguish between 
controls and the two diseases and were enriched in the 
diseased group to controls included Faecalibacterium (F. 
prausnitzii), Roseburia (R. inulinivorans), Coprococcus 
(C. catus), Eubacterium (E. ramulus, E. rectale, E. eligens, 
E. desmolans), Dorea (D. formicigenerans, D. longicat-
ena), Catenibacterium, Finegoldia (F. magna), Blautia 
(B. faecis, B. luti), Prevotella, Megamonas (M. funiformis) 
(fig. 3C). At the mycobiome level, the taxa with the same 
pattern of abundance alterations included Blumeria, 

Aspergillus penicillioides and Alternaria tenuissima. On 
the other hand, the diagnostic taxa that were observed 
to be increased in both diseases with respect to (w.r.t) 
controls included Fusobacterium, Hydrotalea (H. flava), 
Streptococcus (S. thermophilus), Collinsella, Gemella (G. 
haemolysans), Shewanella (S. amazonensis), Methylobac-
terium (M. aquaticum), Parabacteroides (P. distasonis), 
Veillonella (V. dispar, V. parvula) at the microbiome level 
and; Fusarium, Saccharomyces (S. cerevesiae), Parengyon-
dontium (P. album) and Xenoacremonium (X. falcatum) 
at the mycobiome level (fig. 3D).

At the bacteriome level, while Bifidobacterium and 
Finegoldia (F. magna) were specifically enriched in ITB 
w.r.t CD, Bilophila showed the opposite trend (enriched 
in CD w.r.t ITB). Additionally, the pathobiont Rumino-
coccus gnavus, along with Lactobacillus (L. salivarius), 
Solobacterium moorei, Bacteroides stercoris, Collinsella 
(C. aerofaciens) were significantly enriched in ITB w.r.t 
Controls (but unaltered in CD vs. controls analysis). Sim-
ilarly, at the mycobiome level, Candida tropicalis, Alter-
naria metachromatica and Phanerochaete sp. showed 
significant enrichment in ITB w.r.t CD. Additionally, the 
overall abundances of Malassezia, Candida, and Alter-
naria showed a significant increase in ITB (w.r.t control) 
and a trend of enhancement in CD.

Differential taxa can be grouped into three distinct 
co‑abundant modules in the gut microbiome
Next, we investigated if these diagnostic taxa could be 
arranged into specific co-abundant modules. For this 
purpose, we generated a co-abundance network of the 
above-identified 122 taxonomic features (85 gut bacterial 
and 37 gut fungal) (see “Methods” section). Separate co-
abundance networks were constructed for the gut micro-
biome and mycobiome profiles.

The co-abundance network depicting the associations 
between the differentially abundant taxa consisted of 

(See figure on next page.)
Fig. 3  Identification of differentially associating taxonomic features that are diagnostic of the three different groups (Controls, CD and ITB). A 
Identification of the most diagnostic features for each pairwise group classification, using multiple Random Forest models each considering 
only a varying number of top features (e.g. top 10, 20, 30, 40, till 250). For each pair of groups (Controls vs. CD, Controls vs. ITB, CD vs. ITB), the most 
diagnostic set of features were the ones corresponding to the model with the highest classification AUC. B Boxplots comparing the AUC ranges 
for the 50 iterative bootstrapped Random Forest (RF) model variants. As shown, the variants were generated for discriminating between each 
pair of groups (Controls vs. CD, Controls vs. ITB, CD vs. ITB), each considering only the top features identified (in A) for corresponding group-pair. 
For a given pair of groups, to create the RF variant in each iteration we randomly selected 50% of the samples (for generating the training RF 
model). This model was then tested on the rest 50% of the samples (corresponding to the concerned pair of groups). C–D Heatmaps showing 
the cross-group variation of the different taxonomic features identified in A to be amongst the top features discriminating across at least one 
pair of groups at the microbiome (i.e. Bacteriome/Archaeome) (C) and the mycobiome level (D). The upper heatmap groups these features 
based on their differential abundance/detection across each of the subject group pairs (Controls, ITB vs. Controls, ITB vs. CD; indicated by green 
color in the lower heatmap). In this scenario, for any pair in the notation ‘A vs. B’, the taxonomic features increased (in abundance or detection) 
in A with respect to B are highlighted in different shades of pink (FDR < =0.1) and those that are decreased are denoted in different shades 
of blue as denoted by the key. Markers that enable discrimination between controls vs. ITB/CD are highlighted in boxes with yellow boundaries, 
while those that facilitate distinguishing between ITB and CD are shown in boxes with blue lines. Abundance of features are denoted in blue font 
and detection are denoted in blue fonts
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Fig. 3  (See legend on previous page.)
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Fig. 4  Co-abundance network of diagnostic taxonomic features highlighting the three different modules. The three images in A–C show the same 
network, highlighting the only the differentially abundant taxa observed for A ITB vs. Controls, B CD vs. Controls, C ITB vs. CD. In this scenario, for any 
pair in the notation ‘A vs. B’, the taxonomic features increased (in abundance or detection) in A with respect to B are highlighted in pink (FDR < =0.1) 
and those that are decreased are denoted in blue as denoted by the key
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three distinct modules. The “Disease Depleted” mod-
ule consisted of putative beneficial bacterial taxa that 
were depleted across both diseases (highlighted in the 
previous section), such as Faecalibacterium, Roseburia 
inulinivorans, Eubacterium eligens, Coprococcus catus, 
Coprococcus comes, Blautia luti, Dorea longicatena, 
Eubacterium ramulus, etc. (Fig.  4A, B). Taxa that were 
enriched across both diseases, as identified in the pre-
vious section (Fig.  3C, D), comprised lineages like She-
wanella, Hydrotalea, Methylobacterium, etc. (Fig. 4A, B). 
Amongst the ‘disease-enriched’ module, only Bifidobac-
terium was found to be enriched in ITB when compared 
to CD. Two sub-modules were also observed, one com-
prising Finegoldia, which increased in ITB compared to 
CD, and the other containing Bilophila (B. wadsworthia) 
enriched in CD compared to ITB (Fig. 4C).

The mycobiome co-abundance network was observed 
to consist of a central hub of multiple taxa linked through 
Parengyodontium to a Candida-specific sub-hub. While 
both the major hub and the sub-hub were observed to be 
increased in ITB vs. Controls, CD was enriched only for 
the major mycobiome hub to controls. There were also 
multiple disease-specific alterations within the mycobi-
ome network. While Candida tropicalis was observed to 
be enriched in ITB vs. CD, Alternaria metachromatica 
and Phanerochaete showed the opposite trend.

To check the reproducibility of our findings on the 
co-abundance associations, we validated our module-
specific co-abundance relationships using the global gut 
bacteriome/archaeome and mycobiome datasets. Iden-
tification of disease-associated modules reproduced in 
multiple global cohorts could indicate universal gut bac-
teriome/archaeome and mycobiome signatures which 
could be exploited as microbiome-based diagnostics 
and/or therapeutics. To evaluate this aspect, we devel-
oped intra-bacteriome and intra-mycobiome networks 
encompassing >5400 gut bacteriome profiles and ~900 
gut mycobiome profiles collated from 14 studies across 
the globe (Table 1; Supplementary Figures 8, 9). We then 
investigated the reproducibility of the intra-modular 
edges observed within each module (Fig. 4), in the meta-
networks identified in Supplementary Figures 8 and 9.

The intra-mycobiome associations showed distinctively 
low reproducibility across global cohorts. With threshold 
q value < =0.1, we could observe links between specific 
genera and their respective species (as expected) but no 
cross-genera associations. Relaxing the threshold to p 
value < =0.05 increased the number of associations to 33 
with only a few cross-clade links (Malassezia restricta—
Penicillium citrinum; Blumeria—Malassezia; Blumeria—
Trichosporon asahii; Trichosporon—Aspergillus). These 
results indicate the likelihood of intra-mycobiome asso-
ciations being cohort-specific with low reproducibility 

across cohorts (Supplementary Table  2; Supplementary 
Figure 9).

In contrast, the gut microbiome meta-networks 
revealed distinct patterns in the positioning of the 
taxa belonging to the ‘Disease-Depleted’ and ‘Disease-
Enriched’ microbiome modules (Supplementary Fig-
ure  8A). Taxa belonging to the ‘Disease-Depleted’ 
module were observed to occupy central positions in 
the cross-cohort meta-network, showing significantly 
higher degree centrality measures (Mann–Whitney p 
value < =0.002; Supplementary Figure  8A, B). We also 
observed stark differences in the reproducibility of these 
intra-modular edges across the different modules in the 
global meta-network with the intra-microbiome co-
abundance network of taxa depicted in Fig. 4. Amongst 
the reproducible edges across the two co-abundance net-
works, more than 65% belonged to the ‘Disease-Depleted’ 
module.

This indicated that while the associations within the 
‘Disease-Enriched’ and ‘Mycobiome’ modules are spo-
radic and observed only in the specific cohort of this 
study (as well as a likely consequence of indirect asso-
ciations occurring due to other gut ecological changes), 
the taxa belonging ‘Disease-Depleted’ module not only 
constitute the central core of the global gut microbial 
community, but associations within this module are rea-
sonably conserved across cohorts. This indicates a spe-
cific ecological role for these ‘disease-depleted’ taxa as 
‘cornerstones’ within the microbiome whose depletion is 
linked with the onset of both diseases.

Loss of core gut microbiome is linked with the gut 
inflammation phenotype globally across multiple studies
Previous studies have indicated the loss of stability of 
the microbiome in IBD, with multiple studies includ-
ing the current one, reporting the loss of diversity and 
diminishment of certain microbial taxa in gut inflam-
matory disorders [48–51]. Thus, we next checked if the 
two “Disease-Depleted” modules encompassed members 
of a core, health-associated gut microbiome, whose loss 
was driven by the inflammatory phenotype. Our hypoth-
esis herein was that the “health-associated” microbiome 
module contained specific members that were not only 
prevalent across cohorts (as observed from their asso-
ciation with health and reproducible presence in global 
cohorts), but also influenced the stability of the microbi-
ome (which could be a consequence of these taxa occupy-
ing the central nodes of the microbiome). To investigate 
this, we attempted to identify the core of the Indian gut 
microbiome. We collated 1617 gut microbiomes from 
seven studies. Subsequently, using a combination of prev-
alence and meta-network degree centrality (see “Meth-
ods” section), we identified a list of 46 taxa (28 species 
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and 18 genera) that were prevalent (Detection in at least 
four of the seven datasets; 70%) and central (degree cen-
trality in the top 70 percentile) in the Indian gut meta-
network (derived from the seven studies) (Fig.  5A, B; 
Supplementary Figure 10). More than 75% of the Indian 
core gut taxa belonged to the ‘Disease-Depleted’ Mod-
ule-1 indicating that both the diseases were associated 
with the loss of this centrally connected core module in 
the gut microbial community.

Next, we probed if this loss of the core gut microbiome 
could be utilized to profile the extent of gut inflamma-
tion. We devised a simple quantitative score called the 
core gut microbiome score (CGMS). The CGMS for the 
microbiomes belonging to a given dataset was the sum-
mation of the rank-scaled abundances of the core Indian 
gut species (Fig. 5C) that were detected in the given data-
set, with the abundances of each species being weighted 
by its percentile in the degree centrality in the meta-net-
work (Fig. 5A).

We then investigated seven study cohorts (including 
the current study) from India, Sweden, the US and Italy 
and investigated the variation of the CGMS across dif-
ferent inflammation phenotypes. In the current study, 
the controls were observed to have significantly higher 
CGMS values as compared to CD and ITB (with no 
significant differences between the two disease types) 
(Mann–Whitney FDR < =0.05). On the other hand, our 
previous study investigated two different inflammatory 
disorders (CD/UC and Acute Severe Ulcerative Coli-
tis: ASUC) [23]. ASUC subjects have a higher degree 
of inflammation than CD/UC. This was also reflected 
in the CGMS scores, wherein the controls had CGMS 
values significantly higher than either CD/UC or ASUC 
(Mann–Whitney FDR < =0.001 for both), and ASUC 
had significantly lower CGMS values compared to 
CD/UC (Mann–Whitney FDR < =0.001), indicating a 
greater loss of core in ASUC.

We next investigated if the CGMS scores defined on 
the Indian population could predict inflammation phe-
notypes in geographically distinct datasets. For this 
purpose, we investigated the IBD cohort of the Human 
Microbiome Project [45]. Although defined on the gut 

microbiome core of the Indian population, the CGMS 
scores could efficiently distinguish between Controls 
and IBD patients with the CGMS for patients being sig-
nificantly lower (Mann–Whitney p value < =0.001). We 
also investigated another Italian cohort [32], which had 
gut microbiome profiles sampled from Controls, and 
IBD patients with active disease and those in remis-
sion. Even in this case, we observed that the CGMS 
values of the controls were significantly higher than 
those of the patients. The values of individuals in remis-
sion were noticeably higher than the patients, indi-
cating a partial core recovery. Two additional cohorts 
[Hall et  al. (n = 259) and Lloyd-Price et  al. (n = 1627)] 
[8, 45] consisting of gut microbiome profiles of healthy 
controls and of the patients with IBD, showed signifi-
cantly low CGMS in the diseased samples when com-
pared with controls. Swedish cohort [Halfvarson et  al. 
(n = 683)] too, showed a significant reduction in CGMS 
in CD [46]. Thus, these results indicate that the abun-
dance profiles of the core members of the microbiome 
can be utilized to measure the inflammation status of 
individuals.

We then compared the efficacy of the CGMS (as an 
indicator of gut health) with four other indices previously 
proposed for this purpose. These included the Shan-
non Diversity and the GMHI (both known to be posi-
tively associated with controls or ‘healthy’ individuals), 
and Dysbiosis-Score and Kendall Uniqueness (known to 
be associated with diseased groups) This comparative 
evaluation showed CGMS as the only indicator showing 
significant reduction in the IBD-disease groups as com-
pared to the controls across all seven cohorts. The GMHI 
and Dysbiosis-Score were second in performance show-
ing significant decrease and increase in five out of the 
seven cohorts respectively, followed by Kendall Unique-
ness (significantly increased in four cohorts). The worst 
performing indicator was Shannon Diversity (Fig.  5E). 
This indicates that the CGMS is able to perform equally 
or better than other indicators of gut health in the seven 
cohorts.

(See figure on next page.)
Fig. 5  Loss of the core gut microbiome is associated with gut inflammation and its severity across multiple studies. A Multi-study meta-analysis 
approach utilized for identification of the core gut microbiota in the Indian populations. B Co-abundance meta-network shown only for the core 
taxa in the India gut microbiomes derived from the seven studies. C Degree centrality of the identified core India gut taxa at the species level. Taxa 
are listed in descending order of their degree of centrality. D Comparison of the CGMS in different inflammation disease phenotypes in the current 
study, and the previous Kedia et al. study from India [13, 39]. The CGMS are also compared for five additional external studies from North America 
[8, 45-47], two studies from Europe (Liguori et al. from Italy [32]; Halfvarson et al. from Sweden [46]). E. Heatmap showing the association of four 
major indices of gut health along with CGMS with IBD-disease groups across the seven cohorts. Red boxes marked −1 denote a significant decrease 
(with Mann–Whitney test p value < =0.05); blue boxes marked 1 denote a significant increase (with Mann–Whitney p value < =0.05). Depicting 
the comparative evaluation for their association with non-diseased and IBD-patients across all investigated cohorts
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Fig. 5  (See legend on previous page.)
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Investigation of taxa‑inferred metabolic profiles identifies 
specific metabolites whose production or consumption/
degradation associated with loss of control‑associated 
microbiome
In the last part of this investigation, we inferred the puta-
tive metabolic functionalities in the different gut micro-
biomes based on their taxonomic composition. For this 
purpose, we utilized taxa-to-metabolic functionality 
maps of experimentally validated metabolic functional 
profiles collated and used as part of multiple previous 
studies (See Methods). Given the species-level-taxo-
nomic composition of a gut microbiome, this approach 
enabled inferring of metabolic profile given the abun-
dances of its constituent taxa (see “Methods” section).

Comparing the inferred metabolic profiles (using 
Principal Coordinate Analysis or PCoA) across the 
three groups of subjects included in this study iden-
tified significant differences across the three groups 
(PERMANOVA using Bray–Curtis: R-squared = 0.11 
and p = 0.009) (Fig.  6A), with functional variations 
across the three groups, most prominent along the first 
Principal Coordinate PCo1 (Fig. 6B). The most signifi-
cant variation of the functional profiles was observed 
between the ITB and the Control subjects (Mann–
Whitney p value = 0.005), with the CD group at inter-
mediate position.

We further identified the different metabolic func-
tionalities whose abundances associated with Control-
to-Disease variation along the PCo1, by correlating 
the abundance of each metabolic functionality (i.e. the 
cumulated abundance of the taxa having that meta-
bolic functionality) with PCo1 values. We identified a 
total of 43 metabolite production profiles significantly 
associated with PCo1 values. While the production of 
all three short-chain fatty acids (Acetate, Propanoate 
and Butyrate), along with other metabolites like CO2 
and Methylamine, were putatively enriched in con-
trols, the metabolite production profiles associated with 

disease-states contained, besides other, the production of 
the two primary bile acids (BAs), cholic and chenodeoxy-
cholic acids and the secondary hydrophobic BAs (deoxy-
cholic and lithocholic acids) (Fig. 6C). We also identified 
83 metabolic consumption profiles associated with PCo1 
values. Notably, the list of most positively associated 
metabolite consumptions included the consumption 
of glycine- and taurine-conjugated BAs (Fig.  6D). This 
indicated that diseased microbiomes in our study were 
enriched for taxa consuming glycine- and taurine-conju-
gated BAs and producing primary and secondary BAs.

Since the analysis involved inferred metabolic func-
tions, we further checked if the enrichment of these 
functionalities with disease were also replicated in global 
cohorts. We thus computed inferred metabolite profiles 
across six other global matched IBD-control cohorts 
(investigated in Fig.  5D, E) and performed a Random-
Effect Model meta-analysis. Validating the associations, 
the positive association of taurine-conjugated BA con-
sumption and an increased production potential of pri-
mary BA and secondary BA (de-oxycholic: DCA) with 
IBD phenotypes was replicated in this global meta-anal-
ysis (Fig. 6C, D; Supplementary Figure 11).

Thus, we next checked which specific microbiome 
members were associated with these specific functions 
in our study cohort. This revealed that the above con-
version functionalities were primarily present in multi-
ple Bifidobacterium and Lactobacilli, along with specific 
Bacteroides species (fragilis/vulgatus/thetaiotamicron) 
(Fig.  6E). Amongst them, six taxa, Bifidobacterium 
longum/breve, Lactobacillus gasseri/johnsonii and Bacte-
roides fragilis/vulgatus were observed to be significantly 
enriched in disease microbiomes. We further validated 
these associations across the global cohorts. Despite 
cohort-specific variations, despite being known probiot-
ics, B. longum, B. breve, and L. gasseri, were significantly 
enriched in IBD patients across multiple cohorts, along 

Fig. 6  Identification of metabolites associated with the progression from controls towards CD and ITB in terms of consumption, degradation 
and production through inferred metabolite profiling. A The Principal Co-ordinate Analysis (PCoA) plot describes the variation in microbiomes 
in three different groups (Controls, CD and ITB) which has been shown in different color legends. Bray–Curtis distance measure has been used 
to perform the PCoA analysis and the p value and R2 value obtained from PERMANOVA using Bray–Curtis distance has been mentioned as well. B 
The top right plot (box plots) captures the values of Principle Co-ordinate 1 across three different groups (Controls, CD and ITB) and the significance 
in the difference between groups have been shown through the p value calculated through Wilcoxon Rank-Sum test. C Volcano plot showing 
the association of different metabolite production profiles with PCo1 (p values obtained from the Spearman correlation analysis were adjusted 
using Benjamini–Hochberg method for multiple corrections). The same volcano-plot for the consumption/degradation profiles is shown 
in D. The directionality of association of different functionalities with PCo1 as well as with Control or Diseased microbiome is also indicated. 
Functionalities that were also validated in the Random Effect Model meta-analysis in Supplementary Figure 11 are shown in red-boxes. E Heatmap 
on the left panel shows the different taxa associated with the different BA production/consumption profiles. The bar-plot in the middle shows 
the association of these taxa with PCo1 values of part A of this figure (positive values indicating disease association). The right most heatmap shows 
the enrichment or depletion in IBD patients across the global cohorts

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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with B. thetaiotamicron, indicating that these alterations 
are replicable in other cohorts.

Discussion
The study highlights CD and ITB-associated gut bacterial 
and fungal dysbiosis signatures. It identifies disease-asso-
ciated co-occurring modules to evaluate whether this 
dysbiosis signature is a disease-specific trait or a shared 
feature across GI diseases of diverging etiologies.

While CD is known to involve a reduction in gut micro-
bial α-diversity, our results highlight that ITB undergoes 
an even sharper reduction in gut bacterial and fungal 
α-diversity (with the loss of fungal diversity is more pro-
nounced in ITB rather than CD). β-diversity analysis also 
mirrored similar disease-specific patterns of dysbiosis. 
Based on bacteriome profiles, CD and ITB samples were 
found to be quite similar to each other and significantly 
divergent from controls. However, comparing mycobi-
ome profiles between the three groups revealed remark-
able differences between CD and ITB, with the latter 
converging with controls. This implicates the gut myco-
biome to be a key distinguishing factor between the two 
diseases. ITB witnessed a significant loss of gut fungal 
diversity, while the gut mycobiome remained relatively 
unaltered in CD. Malassezia, a lipid-thriving fungus 
known to release pro-inflammatory free lipids from host 
tissues, was found to be enhanced in CD [52, 53].

A key finding of the current study is the multi-cohort-
integrated identification of a panel of 46 gut microbial 
members that occupy central positions in the Indian 
gut microbial community. A combination of specific 
differentially abundant/diagnostic marker analysis 
revealed a disease-associated loss of these core micro-
biome members common in both CD and ITB. On the 
other hand, this loss of the core members is associated 
with a sporadic expansion of putatively detrimental 
disease-associated pathobionts. This phenomenon is 
yet another example of the Anna-Karenina principle 
applied to host microbiomes: All happy microbiomes 
are alike; Each unhappy microbiome is unhappy in its 
way. This has also been observed in multiple studies 
focusing on gut microbiome modulations in unhealthy 
aging, where in the healthy elderly have relatively 
similar core-enriched, youth-like microbiomes [21, 
54]. The loss of this state is associated with an enrich-
ment of multi-disease-associated taxa driving the 
host towards a physiological decline [21]. This loss of 
health-associated microbial signature in IBD had been 
previously highlighted by Halfvarson et  al., where the 
healthy microbiomes were restricted to a small volume 
of ordination space, designated as a ‘healthy plane’, and 
the microbiome from the IBD subjects deviated signifi-
cantly from this plane [46]. This observation was further 

consolidated in another Human Microbiome Project 
study investigating the multiomics of the gut microbi-
ome ecosystem in IBD. Microbiomes from IBD subjects 
with active disease showed higher dysbiotic scores and 
decreased gut microbiome stability when compared to 
the non-IBD controls and the subjects with inactive 
disease [8]. A study by our group highlighted similar 
attributes of gut dysbiosis in UC and acute severe coli-
tis along with obliterated inter-microbe interactions. 
Co-abundance network analysis in this report showed 
significant negative associations between the “health-
specific” and “disease-associated” genera in the healthy 
control, while such negative associations disappeared 
in the IBD microbiome [39]. Studies investigating the 
role of the Mediterranean diet on host health have also 
observed a diet-associated increase of specific core gut 
microflora, which are associated with improvements in 
host inflammation, cognition and physical well-being 
[21]. This significance of the core and central gut bacte-
rial taxa to maintain gut homeostasis, propelled us in 
this study to investigate and formulate 28 species-level 
taxa panel-based core-gut microbiome score (CGMS). 
The CGMS performed rather well as an indicator of 
inflammation extent and phenotype, not only in Indian 
studies but also in distinguishing inflammation pheno-
types of IBD patients (disease, non-diseased, remission) 
from other geographical locations and ethnicities (an 
analysis encompassing seven case–control microbiome 
datasets with >3000 gut microbiomes) [8, 34]. This is 
notable given the large-scale variabilities in the baseline 
gut microbiome composition across host characteris-
tics like geography, demographics, ethnicity and life-
style [55, 56]. Besides highlighting the role of scores like 
CGMS as clinically actionable targets, the results indi-
cate that loss of specific core and central gut bacterial 
members (the panel of 28 species-level taxa) is a con-
served inflammation-linked phenomenon across the 
global cohorts and suggests a pivotal role of these bac-
teria in health. These observations are a putative indi-
cation of how gut bacterial dysbiosis, rather than being 
a contributor to disease-specific etiology, could be an 
effect of the inflammatory milieu that prevails both in 
CD and ITB.

Investigation of the predicted metabolic profiles 
(both in the current and the global cohort), shows con-
sumption of taurine-conjugated BAs and production of 
primary BAs (and one secondary BA: DCA), that are 
primarily derived from Bifidobacterium, Lactobacillus 
and specific Bacteroides, are enriched in inflammation 
phenotypes. While both an increase of Bifidobacteria 
and Lactobacilli [57], and an increased production of 
primary BAs [47], have been associated with IBD inci-
dence, the increased DCA production is contrary to 
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previous observations. Nevertheless, a majority of taxa 
identified here have both functionalities. Furthermore, 
it is also not known whether enrichment of these spe-
cific pathways because of taxonomic alterations is a 
cause or a response to host physiological changes in gut 
inflammatory disorders (one of the limitations of the 
current study).

Even though the study gives important insights into 
the gut microbiome alterations in two GI diseases with 
overlapping clinical manifestations and is amongst the 
first reports delving into the ITB-associated gut micro-
bial dysbiosis, the results must be interpreted keeping 
in mind a few limitations. The CD and ITB gut bacteri-
ome and mycobiome have been derived from 16S and 
ITS-based amplicon sequencing analysis and must be 
validated by shot-gun metagenomics sequencing to gain 
deeper taxonomic assignment and functional signifi-
cance of the predicted metabolic variations in the com-
munity. Even though the results describing the depletion 
of the core microbiome in inflammatory diseases have 
been backed by meta-networks constructed from sam-
ples from other cohorts, the analysis of ITB-associated 
bacterial and fungal dysbiosis must be validated by a 
larger sample size.
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