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duodenum and 31.0 ± 15.7 μm in the ileum of pigs. In the 
colon, this loose layer contains bacteria and digesta, while 
a second, firmly attached mucus layer (35.1 ± 16.0  μm 
in the descending colon of pigs) lies close to the epithe-
lial lining, free of bacteria and food particles [2–4]. This 
sterile layer is essential for protecting the colon epithe-
lium from the large population of microflora present in 
the colon [1–2]. In rats, the estimated mucus thickness 
is about 28.8 ± 25.5 μm in the duodenum, 93.3 ± 59.4 μm 
in the jejunum, and 41.3 ± 16.5  μm in the distal colon 
[5]. In contrast, in mice, the mucus thickness is approxi-
mately 20 μm in the small intestine and around 116 μm 
in the colon [6]. The variations might be due to species, 
breed, or age differences as well as processing methods. 
Relevant data in humans is limited due to difficulty in 
sample availability and needs further exploration. Mucin 
(MUC) glycoproteins, the main building blocks of mucus, 
are synthesized and secreted by specialized intestinal 

Intestinal mucus
Before going into the details of interaction of intesti-
nal mucus with enteric viruses, it is imperative to get an 
in-depth idea of its structure, composition, and physio-
chemical properties. Mucus is a dilute, aqueous, and vis-
coelastic secretion, mainly composed of water (90–95%), 
proteins (∼ 5%), lipids (1–2%), and electrolytes, forming 
a colloidal solution [1]. Small intestinal mucus forms 
a single, loose, and easily removable layer over entero-
cytes, measuring approximately 25.9 ± 11.8  μm in the 
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Abstract
Intestinal mucus plays a crucial role in defending against enteric infections by protecting the vulnerable intestinal 
epithelial cells both physically and through its various constituents. Despite this, numerous gastroenteritis-causing 
viruses, such as rotavirus, coronavirus, adenovirus, astrovirus, calicivirus, and enterovirus, continue to pose significant 
threats to humans and animals. While several studies have examined the interactions between these viruses and 
intestinal mucus, significant gaps remain in understanding the full protective potential of intestinal mucus against 
these pathogens. This review aims to elucidate the protective role of intestinal mucus in viral gastroenteritis. It 
begins with a comprehensive literature overview of (i) intestinal mucus, (ii) enteric viruses of medical and veterinary 
importance, and (iii) the known interactions between various enteric viruses and intestinal mucus. Following this, 
a case study is presented to highlight the age-dependent blocking effect of porcine intestinal mucus against 
transmissible gastroenteritis virus, a porcine coronavirus. Finally, the review discusses future investigation directions 
to further explore the potential of intestinal mucus as a defense mechanism against viral gastroenteritis to 
stimulate further research in this dynamic and critical area.
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epithelial single-cell glands called goblet cells [7]. They 
form a net-like sheet covering the villi, making micro-
pores which create gaps between adjacent mucin sheets, 
allowing the passage of larger particles, including bacte-
ria [8]. About 80–85% of the mucin mass is composed of 
O-glycans, which after binding with water, give mucus 
its gel-like appearance [9]. The central protein domain of 
mucins usually contain large numbers of proline, threo-
nine, and serine (PTS) domains, which after linking with 
glycans, create mucin domains [10]. The three-dimen-
sional surface made by their terminal glycans can interact 
with cells or microorganisms [9]. They are generally cat-
egorized as transmembrane mucins and secreted mucins 
[11]. Commonly expressed mucins in the (gastro)intesti-
nal tract are shown in Table 1.

Mucins are highly glycosylated glycoproteins. In the 
PTS domains, threonine and serine (hydroxy amino 
acids) are O-glycosylated, forming long, stiff mucin 
domains [23]. In MUC2, the mucin domain of a sin-
gle monomer can contain up to 1600 O-glycans and 30 
N-glycans, resulting in a massive glycan array of 3300 
sugar residues, which offer interaction sites for com-
mensal bacteria and invading pathogens, including 
viruses [24]. This glycan array can terminate in a variety 
of sugar molecules, of which molecules like sialic acids 
and histo-blood group antigens (HBGAs) express on the 
enterocyte surface and have been recognized as attach-
ment sites for rotaviruses [25]. This attachment can 
potentially facilitate the entry of viruses into host cells, 
particularly with tethered mucins located at the cell sur-
face. Conversely, soluble mucins may utilize these glycan 
attachment sites to trap viruses, aiding in their removal 
from the intestinal tract through mucus transport. Stud-
ies on transmissible gastroenteritis virus (TGEV) has 
shown its affinity to different sialic acids, with highest 

for 5-N-glycolylneuraminic acid (Neu5Gc) followed 
by 5-N-acetylneuraminic acid (Neu5Ac) and 5-N-ace-
tyl-9-O-acetylneuraminic acid (Neu5,9Ac2) [26, 27]. All 
three sugars have been described as receptors or receptor 
binding co-factors for different coronaviruses [26]. Thus, 
it can be inferred that mucin glycans, particularly related 
to sialic acid moieties, offer much potential in under-
standing the interaction and pathogenesis of enteric 
viruses. Apart from mucins, other proteins modulating 
the host’s immune response such as Immunoglobulin A 
(IgA), lysozymes, defensins, deleted in malignant brain 
tumors 1 (DMBT1), regenerating islet-derived protein 
3 alpha (REG3A), calcium-activated chloride channel 
regulator 1 (CLCA1), IgG Fc-binding protein (FCGBP), 
anterior gradient protein 2 homolog (AGR2), zymo-
gen granule membrane protein 16 (ZG16), kallikrein 1 
(KLK1), and trefoil factor 3 (TFF3), are also present in 
the intestinal mucus [9, 28–31].

Other mucus components like lipids constitute 1–2% 
of mucus and mainly include phospholipids like phos-
phatidyl choline and phosphatidyl glycerol, but in some 
pathological conditions, cholesterol and free and acyl-
ated fatty acids can be observed [32]. Neutral lipids inter-
act with mucins, affecting their hydrophobicity, while 
charged lipids affect the wettability of the mucus layer 
[33]. Furthermore, lipids contribute towards surface ten-
sion, lubrication, rheological properties, and prevention 
of evaporation of aqueous contents of mucus [32]. Lipids 
from dietary sources alter the microbial transport as doc-
umented in reduced motility of E. coli in intestinal mucus 
with high fat diet [34]. The percentage of minerals and 
electrolytes like magnesium and calcium, sodium and 
potassium chloride, sodium bicarbonate, and phosphates 
in intestinal mucus is highly variable and defined by the 
underlying secretory epithelium [32]. These mainly con-
tribute to controlling mucus viscosity and hydration, as 
evident by loss of mucus gel structure by increased mag-
nesium and calcium [35], or reduced mucus viscosity by 
increased concentration of sodium or potassium [32].

Viral gastroenteritis
Acute viral gastroenteritis is one of the most common 
cause of morbidity and mortality in humans and animals 
worldwide [36, 37]. Children under five years of age and 
young suckling animals are particularly prone [38, 39]. 
The extremely high mortality associated with gastro-
enteritis has been estimated to be 3–5 million cases per 
year in humans, the majority of which occur in develop-
ing countries [38]. In the developed world, it is associated 
with high morbidity and high incidence of hospitaliza-
tion [40]. Similarly, it has a huge economic impact on the 
livestock industry, as observed in dairy cattle in terms of 
high mortality, loss of production, and cost of medica-
tion and vaccinations [41]. Below is a concise summary 

Table 1  Commonly expressed transmembrane and secreted 
mucins in the (gastro)intestinal tract
Type of 
Mucin

Mucin Characteristics Function

Trans-
membrane 
(tethered)
[9, 12–17]

MUC3-4, MUC12-13, 
MUC17 (constitu-
tive), MUC1, MUC16 
(upregulated during 
infections and 
cancers)

Type 1 glycopro-
teins with a single 
transmembrane 
domain; N-terminal 
at the apical surface 
of enterocytes

Cell 
signaling, 
creating 
glycocalyx, 
protecting 
entero-
cyte cell 
membrane

Secreted
(gel-form-
ing)
[9, 18–22]

MUC2 (principal in 
intestines), MUC6 
(gastric and duodenal 
glands), MUC5B 
(low levels in colon), 
MUC5AC (upregu-
lated during intestinal 
nematode infections)

Cysteine-rich 
N- and C-terminal 
domains mediating 
oligomerization

Form-
ing the 
skeleton 
of the 
intestinal 
mucus 
layer

MUC: mucin
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highlighting the key structural features, pathogenesis, 
and immune responses associated with major gastroen-
teritis-causing viruses in both humans and animals:

Rotaviruses
Rotavirus (RV) is a genus of multilayered non-enveloped 
viruses of about 100  nm diameter in the family Reo-
viridae [42, 43]. The triple-layered icosahedral capsid 
encloses a genome of 11 segments of double-stranded 
RNA (dsRNA), each coding for one or two viral proteins 
[44]. The species are based on serogroups A-J and puta-
tive species RVK and RVL are already reported [45]. The 
outer layer of the capsid contains VP7 and VP4 proteins 
that are important for viral attachment, entry, and anti-
genicity while also determining rotavirus serotype and 
strain [46]. These proteins are also called G (for glyco-
protein) and P (for protease-sensitive) types, respectively 
[47]. Sialic acids, integrins and hsc70 have been reported 
as functional receptors for many RVs [48, 49]. Addi-
tionally, our lab’s work on primary porcine enterocytes 
co-cultured with porcine myofibroblasts infected with 
porcine rotavirus hinted towards the usage of a basolat-
eral intercellular receptor [50]. There are at least 27 G 
types, and 37 P types of rotavirus identified so far, though 
only a few of them are common in humans and animals 
[51]. They also go under genetic reassortment and carry 
a zoonotic potential [52]. However, genome characteriza-
tion of ancient and recent Belgian pig RVAs from our lab 
has indicated a different evolutionary path with human 
Wa-like RVAs [53], suggesting a better adaptation of pig 
RVAs to porcine enterocytes and less chances of spread 
to human populations. In humans, the diseases severity 
of rotavirus infections is higher than other enteric patho-
gens [54]. Inflammation of the stomach and intestines 
leading to diarrhea, vomiting, fever, and dehydration are 
the main clinical signs [55]. Neonates are generally less 
affected probably due to protection from maternal anti-
bodies, yet infections are more severe in young children 
and animals [56]. Work on porcine rotavirus from our 
lab in Belgian pig farms has identified RVA with heterog-
enous VP7/VP4 genotype combinations [48], subclinical 
RVA [57], along with RVA and RVC [58]. A detail of com-
mon rotavirus species along with common genotypes 
with respect to their host is provided in Fig. 1 [59–61].

Coronaviruses
Coronaviruses (CoV) are large, enveloped viruses of the 
family Coronaviridae containing positive-sense single-
stranded RNA (ssRNA) enclosed within the nucleocap-
sid protein of around 30 kbps size [62]. They have four 
main structural proteins: spike (S), membrane (M), 
envelope (E), and nucleocapsid (N), arranged in a spe-
cific pattern that gives the virus its characteristic crown-
shaped (corona) appearance [63]. Certain members of 

the Betacoronavirus genus, particularly those in lin-
eage A, possess an additional hemagglutinin-esterase 
(HE) structural protein, exhibiting lectin-like activity by 
binding to sialic acid [64], making it crucial for study-
ing its interactions with mucus. The S protein has two 
subunits: a receptor-binding domain (RBD, S1) and the 
membrane-fusion domain (S2) [65], making it a target 
of many vaccines and therapeutics against coronaviruses 
[66]. Receptor usage depends on virus type. For exam-
ple, SARS-CoV-2 uses angiotensin converting enzyme 2 
(ACE2) [67] while porcine coronaviruses like transmissi-
ble gastroenteritis virus (TGEV) mainly use aminopepti-
dase N (APN) [68]. Another study from our lab reported 
a two-to-seven-fold higher infectivity of TGEV Miller in 
APN positive cells than in APN negative cells, but TGEV 
Purdue replicated better in APN negative cells [69]. The 
same study reported that terminal sialic acids are not 
determinants of TGEV infection. This shows that recep-
tor usage of coronaviruses is highly variable. Although 
coronaviruses are mainly associated with respiratory 
infections in humans, they are known causative agents 
of neonatal diarrhea in many animals [70], as shown in 
Fig.  1. In humans, studies on severe acute respiratory 
syndrome-CoV-2 have also identified the presence of the 
virus in fecal samples, suggesting that it may be capable 
of causing gastrointestinal infections as well [71]. In addi-
tion, there are several other coronaviruses that have been 
detected during gastrointestinal infections in children, 
including 229E, OC43, HKU1, NL63 [72]. Moreover, 
research on the replication of swine acute diarrhea syn-
drome coronavirus in primary human cells indicates that 
humans may be susceptible to this virus, highlighting a 
potential zoonotic threat [73]. Similarly, the zoonotic 
nature of porcine delta coronavirus (PDCoV) has also 
recently demonstrated with detection in plasma samples 
of hospitalized children in Haiti [74]. Animal coronavi-
ruses cause extensive necrosis of mature jejunal and ileal 
enterocytes within 24 h of infection, reducing enzymatic 
activity (mainly alkaline phosphatase and lactase) and 
disrupting digestion and electrolyte imbalance, leading 
to fluid deposition in the intestinal lumen, causing acute 
malabsorptive diarrhea [75]. The resulting dehydration 
and loss of extravascular proteins is fatal and could lead 
to metabolic acidosis, increased K+ levels, and eventually 
cardiac arrest [76]. Main symptoms include severe diar-
rhea, anorexia, emaciation, and dehydration [77]. Infec-
tion is more severe in newborn animals with mortality 
rates reaching 100% in the absence of lactogenic immu-
nity [78].

Enteric adenoviruses
Adenoviruses are non-enveloped, icosahedral viruses of 
the family Adenoviridae, of 70–90 nm diameter, and have 
a linear dsDNA genome of approximately 26–48 kbps 
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Fig. 1  A comprehensive list of common gastroenteritis-causing viruses with details of the virus species, type, diseases and host species.
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[79]. The genome is packaged into a protein capsid that 
consists of three main structural components: (1) pen-
ton base, a five-fold symmetric protein structure that 
forms the vertex and is responsible for virus attachment 
to the host cell; (2) hexon, the capsid protein forming 
the bulk of the virus particle; (3) fiber, a trimeric protein 
binds to specific receptors on the host cell surface [80]. 
The genome is bound to histone-like proteins known as 
protamines [81]. They are highly regarded for their use in 
vector-based vaccines due to their ease of genetic manip-
ulation, inherent stability, and wide tissue tropism [82]. 
Enteric adenoviruses cause gastrointestinal infections in 
both humans and animals. Among 111 types of human 
adenovirus (HAdV), enteric types like F40/41 are signifi-
cant acute gastroenteritis agents in children [83]. Entero-
colitis-like symptoms have been associated with different 
adenovirus species isolated from various domestic and 
wild animals as well, as shown in Fig. 1 [84, 85].

Astroviruses
Astroviruses are small, non-enveloped viruses of the 
family Astroviridae containing a single-stranded RNA 
genome of approximately 6.8 to 7.9 kbps [86]. Common 
to most RNA viruses, their genomes are prone to a high 
mutation and recombination rate, resulting in species 
that can infect a wide variety of hosts [87, 88]. They are a 
common cause of gastroenteritis in human children and 
young animals all over the world [89, 90]. The symptoms 
include diarrhea, nausea, vomiting, abdominal cramps, 
low-grade fever and malaise [91]. They mainly infect the 
intestinal goblet cells, leading to increased mucus pro-
duction and electrolyte imbalance [92]. Some common 
astroviruses infecting human and different animal spe-
cies are described in Fig. 1 [84, 90].

Miscellaneous viruses
There are several other viruses that can cause gastroin-
testinal infections in humans and animals, including:

1.	 Caliciviruses: two genera, Norovirus (also called 
Norwalk virus) and Sapovirus are known to cause 
gastroenteritis in humans. Norovirus is a small 
non-enveloped virus [93] and is common in settings 
such as schools and nursing homes [94]. Sapovirus 
gastroenteritis is usually associated with mild, self-
limited illness, but can cause more severe disease in 
immunocompromised individuals [95]. Symptoms 
include diarrhea, vomiting, abdominal cramps, and 
fever [96, 97].

2.	 Enterovirus: a genus that forms the largest group in 
the ever-expanding Picornaviridae family contains 
important enteric viruses, including poliovirus [98]. 
These may cause a whole range of illnesses, including 
gastrointestinal infections [99].

3.	 Avian Influenza Virus (AIV): primarily a respiratory 
virus, it has also been observed to replicate in the 
intestinal cells of chicken (H5N1 [100], H9N2 [101], 
H7N1 and H1N1 [102]) and humans (H9N2 [103]).

4.	 Paramyxoviruses: mostly associated with respiratory 
diseases in humans, however some members of this 
group are known to cause gastroenteritis-like disease 
in domestic animals and birds with symptoms 
ranging from mild to severe diarrhea [104]. A 
list of common miscellaneous viruses causing 
gastroenteritis in humans, animals and birds [96, 
105–107] is also provided in Fig. 1.

Interaction of enteric viruses with intestinal mucus: 
a literature review
The interaction between viral particles and mucus 
remains a largely unexplored field. Biological mucus is a 
dynamic fluid due to the elasticity provided by gel-form-
ing mucins like MUC2 [108]. The viral transport through 
this dynamic layer is strongly related to the particle-to-
pore size ratio and is dependent on: (1) passive diffusion 
when particle is smaller than pore size; (2) active trans-
port by manipulation of mucus elasticity when particle 
is larger than pore size; and (3) a combination of mucus 
elasticity and viscosity (microscopic rheology) when both 
particle and pore size are similar [108]. These interac-
tions are relevant when biochemical factors are not con-
sidered; incorporating them will undoubtedly introduce 
additional complexity. Hence, the third condition is more 
interesting as most enteric viruses have comparable sizes 
to average mucus pore size (∼ 50–200 nm) [109], and bio-
chemical interactions between these viruses and mucosal 
components might be more prominent. As particle size 
increases, their diffusion rates decrease. When particles 
reach approximately 500  nm to 1  μm in diameter, the 
rheological properties of the mucus overcome their free 
diffusion [105]. Furthermore, mucins and their glycans, 
as previously mentioned, serve as significant interaction 
sites for sugar-recognizing enteric viruses such as rotavi-
rus and coronavirus. For research on mucus-virus inter-
actions, both in vivo and in vitro models have been used. 
However, in vivo studies are mostly based on dynamic 
mucus while the in vitro studies on static mucus, which 
often leads to inconsistent results. Table 2 presents an in-
depth review of the interactions between enteric viruses 
and intestinal mucus, drawing from various research 
studies.

This suggests that various enteric viruses interact with 
intestinal mucus and mucins like MUC2, providing sig-
nificant potential for investigating protective or blocking 
effects of intestinal mucus against these viruses. The fol-
lowing case study exemplifies how this interaction can be 
explored to assess the blocking effect of intestinal mucus 
on enteric viruses of medical and veterinary importance.
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Case study: age-dependent protective role 
of porcine ex vivo intestinal mucus against 
transmissible gastroenteritis virus (TGEV)
Now that we have an idea on how different enteric 
viruses interact with intestinal mucus, let us dive into a 
case study where we investigated the age-dependent pro-
tective effect of porcine ex vivo intestinal mucus against 
TGEV infection. This virus infects enterocytes of small 

intestines in pigs of all ages [131]. The clinical signs, 
including diarrhea, vomiting, dehydration, and high mor-
tality, are very severe in young piglets during their first 
days of life. The mortality rate in 1 to 3-day-old piglets 
without lactogenic immunity can reach 70–100% [132]. 
The clinical signs become less pronounced with increas-
ing age. Studies on TGEV titer in tissues of different ages 
of pigs suggest a higher infection rate in 3-day-old pigs 

Table 2  Interaction of enteric viruses with intestinal mucus
Virus Model Interaction Reference
Rhesus rotavirus (RRV) In vitro and

In vivo 
mouse

Virus infection decreases in the presence of mucin isolated from human milk [110]

In vivo 
mouse

↑Bacteroides and Akkermansia populations which have mucin-digesting properties, leading to ↑ 
RRV virulence

[111]

In vitro Suckling intestinal mucins neutralize RRV more effectively than adult mucins [112]
In vivo 
mouse

↑ mucin-digesting bacteria
↓ Lactobacillus species
↑ rotavirus virulence

[111]

Suckling intestinal mucins neutralized RRV more effectively than adult mucins [112]
Epizootic Diarrhea of In-
fant Mice (EDIM) mouse 
rotavirus strain

↑ MUC2 mRNA levels
Potent anti-rotaviral effect of mucin isolated from 4dpi infected mice

[113]

Human rotavirus In vitro Possible binding of P[19] with mucin cores 2, 4, and 6 [114]
Human P[19] and P[II] 
genogroup (P[6], P[8], 
P[4])

Possible interaction of P[II] genogroup RV VP8*s with mucin core 2 [115]

RVA/Human-wt/IND/
mcs60/2011/
G3P

Strong P[10] binding with mucin core 2 and weak binding to mucin core 4 [116]

Simian rotavirus In vivo 
mouse

Rotavirus binds to sialomucins [117]

SARS-CoV-2 In vivo 
monkey

↓ Ki67 and mucin-containing goblet cells in GIT with intragastric inoculation [118]

TGEV and PEDV In vitro Attenuated infection in the presence of mucus layer derived from porcine intestinal organoid 
air–liquid interface monolayer

[119]

PEDV In vivo pig Acidic mucins in PEDV-infected pigs 2dpi
↓ Goblet cells in PEDV infected pigs 1-5dpi (nursery) and 3-5dpi (weaned)

[120, 121]

In vitro and
In vivo pig

Antiviral activity of MUC2 and mucus-derived Calpain-1 on Vero E6 cells
Oral administration of Calpain-1 in piglets provides resistance to infection

[122]

Feline enteric coronavi-
rus serotype 1

In vitro Treatment of feline intestinal epithelial cell cultures with bovine submaxillary mucin inhibits 
subsequent viral infection

[123]

IBV Mass-41 and IBDV 
serotype 1

In vitro and
In vivo 
chicken

Calcium binding protein 1 (CALB1) derived from ileal mucus significantly suppresses the repli-
cation of both viruses

[124]

Human adenovirus 
(HuAdV) 5p

In vitro Preferential infection of goblet cells in human enteroids and potent neutralization by the 
enteric human alpha-defensin HD5

[125]

Human norovirus GII.10 
virus-like particles

Antiviral activity of porcine gastric mucin measured by ELISA in terms of IC50 and OD reduction [126, 127]

Enterovirus 71 (EV71) ↓ expression of goblet cell–derived mucins [128]
Murine astrovirus (fecal 
isolated)

In vivo 
mouse

Active infection in small intestinal goblet cells, ↑ mucus-associated bacteria, ↑ E. coli coloniza-
tion resistance

[129]

Human astrovirus 1 
and 8

In vitro ↑ virus infectivity on Caco-2 cells with
↑ dose of porcine stomach mucin

[130]

AIV H9N2 In vivo 
chicken

↓ mRNA expression of MUC2 at 5dpi [100]

↑: increased/higher; ↓: decreased/lower, dpi: days post-infection; PEDV: porcine epidemic diarrhea virus; TGEV: transmissible gastroenteritis virus; IBV: Infectious 
Bronchitis virus; IBDV: Infectious Bursal Disease virus; IC50: Half-maximal inhibitory concentration; OD: optical density; AIV: Avian influenza virus; MUC: mucin
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Fig. 2 (See legend on next page.)
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than 3-week-old pigs 3–4 days post-infection [133, 134]. 
We first thought that this age-dependent loss of suscep-
tibility could be due to the higher expression of corona-
virus receptors in intestines of young piglets. However, 
upon investigation, a clear correlation was not found 
[135]. We then investigated this correlation in terms of 
the expression of mucus-producing cells from two differ-
ent age groups of pigs (3 days and 3 weeks) in the same 
study. It was concluded that the number of mucus-pro-
ducing cells increased with age and may play an essen-
tial role in protecting enteric mucosae against intestinal 
viruses [135]. Thus, we carried further studies to explore 
the age-dependent, anti-TGEV protective effect of intes-
tinal mucus along with its physiochemical properties 
from 3-day-old and 3-week-old pigs [109]. Figure 2 out-
lines these findings in a schematic manner, showing key 
differences between newborn (3-day-old) and peri-wean-
ing (> 3-week-old) pigs.

The mean percentage of mucus producing cells from 
the duodenum to the colon increased with age with 
the highest mean percentage observed in the Brunner’s 
glands of the duodenum [135]. This was checked on 
both paraffin embedded and cryopreserved tissues in 
two different settings and the results corresponded to 
each other. Thus, ex vivo intestinal mucus from the two 
age groups was collected using a previously described 
method [136]. Using single particle tracking (SPT), it was 
shown that TGEV moves more freely in 3-day mucus as 
compared to 3-week mucus measured in terms of dif-
fusion coefficient calculated by means of multiple tra-
jectories over a short period of 5  s [109]. A diffusion 
pattern was analyzed using an in-house system over lon-
ger periods (10 min and 30 min) and again showed that 
TGEV diffused significantly better in 3-day mucus than 
in 3-week mucus [109]. In the same study, it was dem-
onstrated that 3-week mucus has a significant TGEV-
blocking effect on susceptible swine testicular (ST) cells 
as compared to the 3-day mucus. Next, the physicochem-
ical properties of the ex vivo mucus from both age groups 
was examined to understand the age-dependent protec-
tive effect. Using a rheometer, we showed that 3-week 
mucus exhibited less shear thinning (higher viscosity) 
as compared to 3-day mucus [137]. In the same study, 
we also measured the pore-size of mucus using atomic 
force microscopy (AFM) which ranged between 10 and 
350 nm in 3-day mucus and from around 8 to 240 nm in 
3-week mucus. The average pore size for 3-day mucus 

was 234.56 ± 129.5 nm in diameter, while that of 3-week 
mucus was 152.60 ± 94.4 nm. In 3-day mucus, more than 
80% of the pores were larger than the average diameter of 
TGEV particles (∼ 80–120 nm), while in 3-week mucus, 
about only 50% pores were larger than the virus diame-
ter. And finally, the proteomic profile of the two mucus 
samples showed that MUC2, the main mucin of intesti-
nal mucus, was more prevalent in 3-week mucus which 
could play a role in blocking the viral infection in older 
pigs, as mucins have been shown to inhibit coronavirus 
infection in a glycan-dependent manner [138]. Interest-
ingly, MUC13 was significantly more expressed in 3-day 
mucus. This transmembrane mucin is highly expressed 
on the apical surface of enterocytes, and its role in nega-
tively regulating the tight junction proteins and intesti-
nal epithelial barrier integrity through protein kinase C 
has been recently identified [139]. This can also explain 
the increased viral susceptibility of 3-day-old pigs as epi-
thelial integrity is decreased because of MUC13 activity. 
APN, the main receptor for TGEV/PRCV [140], had a 
higher expression in 3-day mucus. This soluble APN in 
mucus may drive TGEV towards susceptible epithelial 
cells. When taken together, all the data shows that there 
is an age-dependent protective effect of porcine ex vivo 
intestinal mucus against TGEV.

This case study exemplifies the integration of fun-
damental techniques such as histology with in-house 
developed methods, established techniques like SPT and 
AFM, and omics analysis to produce valuable baseline 
data. It also highlights the significant potential for further 
investigation into the protective role of intestinal mucus 
against viral gastroenteritis.

Future research pathways to explore intestinal 
mucus as a defense against viral gastroenteritis
With our enhanced understanding of how intestinal 
mucus interacts with enteric viruses, the next section will 
explore the potential applications of this knowledge in 
future research.

Quantifying mucus-producing cells in the intestine of a 
particular species
The number of mucus-producing cells along the intesti-
nal length can give a good indication of mucus produc-
tion in a particular species, age-group or individual [141]. 
We demonstrated that the number of mucus-producing 
cells per total epithelial cells increased with pig’s age 

(See figure on previous page.)
Fig. 2  Schematic representation of the differences in 3-day and 3-week mucus from our studies. Mucus-producing cells: cumulative number of mucus-
producing cells in different intestinal regions (D = duodenum, MJ = mid-jejunum, I = Ileum, C = colon) is schematically represented, showing a higher 
number in 3-week intestines. TGEV diffusion in mucus: diffusion in 3-day mucus was higher as compared to 3-week mucus. TGEV infection blocking 
by mucus: a smaller number of TGEV-infected cells were observed in the presence of 3-week mucus as compared to 3-day mucus. Mucus rheology: 
3-week mucus exhibited more viscosity (η) with an increasing shear rate as compared to the 3-day mucus. Mucus pore size: pore size was more variable 
and larger in 3-day mucus. Mucus composition: Intensity-based absolute quantitation (iBAQ) of MUC13, MUC2, and APN is schematically represented, 
which revealed that a higher expression of MUC13 and APN was observed in 3-day mucus while MUC2 was significantly higher in 3-week mucus



Page 9 of 18Saleem et al. Gut Pathogens           (2025) 17:11 

along the whole intestinal length, suggesting more mucus 
production per unit of area in older pigs [135]. This could 
provide an explanation why younger piglets are more 
prone to severe infections and high mortality. As the 
fixation process during mucus staining strongly impacts 
the preservation of mucus in histological sections [142], 
traditional PAS staining on paraffin sections and a novel 
method of fixing cryosections on the positively charged 
Blotting-Nylon 66 membranes could be used [135]. The 
results corresponded to each other. This shows that rela-
tively simple staining techniques can still be efficient in 
providing valuable data related to virology. Furthermore, 
region-specific changes in the intestines can also pro-
vide significant data related to enteric viral infections. 
The Brunner’s glands found in the duodenum produce a 
large amount of mucus as observed in our study [135]. 
Mucus produced from these merocrine glands is more 
alkaline to counteract the acidic content coming from the 
stomach [143]. This could explain why the duodenum is 
relatively less infected by enteric viruses as compared to 
jejunum and ileum. A study using in-situ hybridization 
for the detection and localization of PEDV found strong 
signals in villus enterocytes of jejunum and ileum of all 
ten pigs, while duodenum was positive in only one pig 
[144].

Thus, quantifying intestinal mucus or mucus-produc-
ing cells with respect to the intestinal region, host species 
or age holds significant translational value across various 
medical fields. Measuring mucus levels can enhance the 
diagnosis and monitoring of conditions like inflammatory 
bowel disease (IBD) and ulcerative colitis, as variations in 
mucus production may indicate disease progression or 
treatment response [145]. Understanding individual dif-
ferences in mucus production can help tailor treatments 
for gastrointestinal diseases, offering specific therapeutic 
approaches based on mucus levels [146]. Insights into 
mucus dynamics can guide the creation of new drugs, 
allowing researchers to design medications that modu-
late mucus production to improve patient outcomes [32, 
146]. Additionally, studying mucus interactions with gut 
microbiome can lead to the development of probiotics or 
other interventions that support overall health [147]. As a 
protective barrier for the gut lining, mucus quantification 
can help researchers understand and address barrier dys-
functions in diseases, potentially preventing infections 
and inflammation.

The potential role of mucus composition changes during 
infections
Mucus composition is mostly explored by perform-
ing a proteomic profile consisting of mucins, enzymes, 
immunoglobulins, and non-mucin proteins including the 
immunomodulatory elements like antimicrobial peptides 
(AMPs) [148]. However, apart from proteins, intestinal 

mucus is a blend of lipids, electrolytes, and water [9]. 
In a study from our lab, a label-free proteomic analy-
sis of the ex vivo intestinal mucus from 3-day-old and 
3-week-old pigs revealed that around 2.75% proteomic 
profile was unique between the age groups [109]. There 
is a variety of non-mucin proteins that are in play dur-
ing different infectious diseases. Secretory IgA can bind 
to certain bacteria forming immune complexes that pro-
mote phagocytosis [149]. ZG16 is known to combine 
with the peptidoglycans found in the gram-positive bac-
terial cell wall, forming large aggregates that cannot cross 
the mucus layer [150]. Receptor proteins like NLRP6 are 
activated during certain viral and gram-positive bacte-
rial infections [151]. AMPs like defensins and cathelici-
dins possess antibacterial and antiviral properties that are 
mainly released into the intestinal lumen by the Paneth 
cells (PCs) [152–154]. Thus, characterization of these 
molecules in mucus samples from different ages of host 
species can provide a better overview of the onset, pro-
gression, and severity of enteric diseases, especially in 
newborn humans and suckling and naïve animals.

Non-proteinaceous parameters of intestinal mucus like 
the yield, pH, water content, sugars, lipids, and metabo-
lites also considerably affect the mucus composition. 
Mucus pH affects virus stability as evidenced by the high 
antiviral activity of cervicovaginal mucus against human 
immunodeficiency virus 1 (HIV-1) at acidic pH [155]. 
Lipid profile variation in different sputum samples affects 
influenza and rhinovirus infection [156]. Mucus electro-
lytes alter mucus properties as divalent cations (Mg2+, 
Ca2+) are known to collapse the mucus gel structure 
while monovalent cations (Na+, K+) are known to reduce 
mucus viscosity [32], which in turn can affect virus tro-
pism and infection. Thus, these non-proteinaceous intes-
tinal mucosal components offer much room for future 
investigation in relation to viral gastroenteritis. The 
absolute mucus yield can be measured as the weight of 
mucus in grams per meter of intestinal length, whereas 
the relative yield (%) can be calculated by dividing the 
mucus weight by total tissue weight before mucus col-
lection for a specific length [157]. The pH measurements 
can be done on fresh mucus samples within 1 h of collec-
tion using a micro-electrode pH meter, while the water 
content can be analyzed by freeze-drying the mucus 
samples and comparing its weight with fresh samples for 
similar quantities [158]. Glycomic, lipidomic and metab-
olomic analyses can be performed like proteomic analysis 
by using mass spectrometry techniques like LC-MS or 
GC-MS [158]. Hence, it can be concluded that the mucus 
compositional changes occurring with respect to age and 
disease status of the host is a key research area during 
infection diseases and host-pathogen interaction studies.
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Unveiling the immunological role of intestinal mucosa in 
viral gastroenteritis: pathways for future research
Intestinal mucosa serves as the frontline in between 
invading pathogens and the intestinal immune system. 
Intestinal mucosal immunity involves a complex inter-
play of cells like PCs, enterocytes, Goblet cells (GCs), 
innate lymphoid cells, intraepithelial lymphocytes, and 
lymphoid systems such as the ileal Peyer’s patches, which 
together form the gut’s innate immune system and regu-
late adaptive responses upon interaction with microbes 
[159]. Immune cells like dendritic cells (DCs) and neutro-
phils are in direct contact with the intestinal lumen, while 
specialized cells like γδ T receptor-expressing intraepi-
thelial lymphocytes do not have access to the intestinal 
lumen but maintain homeostasis by producing AMPs 
and limiting pathogen invasion after barrier breaches 
[160]. CXCR1 + chemokine receptor 1 (CXC3CR1) 
expressing DCs can intercalate between epithelial cells 
to uptake antigens from luminal mucus, while chemo-
sensory tuft cells, crucial for helminth infections, and 
M cells, which also uptake luminal antigens, may also 
be present in the intestinal mucus [161, 162]. Intestinal 
epithelial cells and local innate immunity form a barrier 
to pathogens via Toll-like receptors (TLRs), while adap-
tive immunity is established through antigen recognition 
by antigen-presenting cells (APCs) in Peyer’s patches 
and mesenteric lymph nodes [163]. TLR1, TLR2, TLR4, 
TLR6, and TLR10 are specifically related to the recogni-
tion of viral proteins [164]. The T and B lymphocytes of 
the gut-associated lymphoid tissues (GALTs) are involved 
in IgA responses, further strengthening the adaptive 
immune response [165]. IgA is known to bind bacteria 
or viruses and slow down their diffusion and bacterial 
motility in the mucus [29]. Antimicrobial components 
such as lysozymes, defensins, and DMBT1 are also pres-
ent in small intestinal mucus produced by PCs located in 
the intestinal crypts [30]. In humans, intestinal epithelial 
cells produce REG3A, which has bactericidal properties, 
typically against Gram-negative bacteria [31]. Addition-
ally, GCs secrete immune modulators such as CLCA1, 
FCGBP, AGR2, ZG16, KLK1, and TFF3, though their spe-
cific functions remain largely unknown [9]. Hence, sig-
nificant gaps remain in our understanding of how these 
immunological factors of the intestinal mucosa interact 
with enteric viruses, offering abundant opportunities for 
future research.

The implications of mucin glycans for protection against 
pathogens
Among the various constituents of the mucosal sys-
tem, mucins stand out as the primary functional ele-
ments of intestinal mucus, as reported in various studies 
[166–169]. Within the realm of mucins, it is the mucin 
glycans that present the most compelling and relatively 

unexplored area of study in relation to enteric viral infec-
tions. TGEV has an affinity for different sialic acids, such 
as Neu5Gc, Neu5Ac, and Neu5,9Ac2, which also act as 
receptors or receptor binding co-factors for other coro-
naviruses [26, 27]. MUC2 is rich in these sialic acids and 
may play a role in determining virus pathogenicity [170, 
171]. The sialic acids are known to bind and trap respi-
ratory viruses aiding in their clearance via mucociliary 
transport of the respiratory system [172]. Other viruses 
like rotavirus, influenza B and C viruses, respirovirus and 
certain parvoviruses are also known to use sialic acids as 
receptors through their sialolectins [173], where mucin 
glycans might be of interest as they may provide decoy 
receptors for these viruses. The glycan-dependent inhibi-
tory effect of mucins against coronavirus infection of live 
cells is also reported [138]. Thus, performing a glycan 
analysis and subsequently using them in virology assays 
can provide a good idea about their potential protec-
tive role against enteric viruses. Commercially available 
mucins like porcine gastric mucin are available to carry 
out these studies [174]. However, the ex vivo mucus 
extracted directly from the host species can also be puri-
fied to extract mucins. Addition of guanidine hydro-
chloride or urea in the extracted mucus can weaken the 
hydrophobic bonds between mucins and other mucosal 
components easing subsequent purification [175, 176]. 
Using density gradients like cesium chloride or rate zonal 
centrifugation, further impurities like cellular and fecal 
debris can be removed [177–179]. Chromatographic 
separation like size exclusion chromatography or gel fil-
tration can be employed to isolate relatively larger sized 
mucins from other mucosal components [180]. Mucin 
fractions isolated under this fashion can be monitored 
by UV absorbance at 215  nm and visualized by mucin-
specific staining like PAS [181]. These isolated mucins 
can then be desalted, concentrated, and lyophilized for 
storage, while mass spectrometry can be used to assess 
their composition [182]. From these purified mucins, 
O-glycans can be extracted using non-reductive alkaline 
β-elimination ammonolysis, which conserves the struc-
ture of glycans [183]. From these extracted glycans, core 
glycan structures can be isolated using partial acid hydro-
lysis and analyzed by mass spectrometry [184]. These gly-
cans can be incorporated into virology experiments like 
virus plaque-blocking assays. Concludingly, mucin gly-
cans isolated from different host species can give an idea 
of the glycomic changes that might play a key role in pro-
tecting against enteric viral infections.

Use of intestinal mucus as a therapeutic measure against 
enteric infections
Although the idea of using purified mucins extracted 
from intestinal mucus as a therapeutic tool to com-
bat enteric infections, particularly in newborn humans 
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and animals, may seem far-fetched, there is promis-
ing research in this area. However, the use of synthetic 
mucins as therapeutics is a viable possibility. For instance, 
Nason et al. have developed special HEK293 cells that are 
‘glyco-engineered’ to express representative short tandem 
repeats (∼ 200 amino acids) of human O-glycodomains 
[185]. This approach could potentially be adapted to 
enhance the therapeutic application of mucins. With tun-
able structures and patterns of O-glycans, that are rep-
resentative of actual mucin repertoire of the body, large 
quantities of specific mucin glycodomains can be sus-
tainably manufactured from natural mucin polymers and 
their therapeutic potential as dietary pre-biotic material 
can be assessed. These mucins can either offer their pro-
tective ability by directly blocking the invading viruses or 
bacteria, or by stimulating the natural commensals of the 
body in maintaining gut health.

Recombinant N-glycoproteins such as IgG and erythro-
poietin have already been investigated and characterized 
for their use as biopharmaceutical products [186–188]. 
Wohlschlager et al.. also described multiple N-glycans 
and up to 26 O-glycans attached to the chimeric TNF-α 
receptor fusion protein with a therapeutic potential 
[187]. Thus, similar quality control studies can be utilized 
for mucin O-glycan standardization. However, an impor-
tant consideration here is that the therapeutic effect of 
mucus can be specific to host species, and the patho-
gens adapted to that species. Bovine mucins inhibited 
the infection of bovine-originated human coronavirus 
OC43 in susceptible cells in a concentration- and glycan-
dependent manner but could not inhibit Mouse Hepatitis 
Virus (MHV), a mouse coronavirus [138]. This suggests 
that mucin biophysics and biochemistry is dependent on 
small conformational and glycoform changes that may be 
related to species genetics, metabolism, or the environ-
ment [12, 189, 190]. Hence, isolation of species-specific 
mucins and mucin glycans should be considered. Regard-
less, it is ambitious but an achievable idea that offers 
huge research potential. Apart from mucins, other anti-
microbial components of mucus like AMPs or lipids also 
hold potential for synthetical engineering and be used as 
therapeutics. Moreover, with the progress in fecal micro-
biota transplantation and its success in treating gastroin-
testinal disorders [191], there is a potential for intestinal 
mucus transplants from healthy individuals to those with 
viral gastroenteritis, which should be explored.

Decoding viral pathogenesis and tropism through 
comparative mucus studies across different systems
Mucus composition varies across different physiologi-
cal systems with a species [192]. This is another poten-
tially important area to study viral pathogenesis and 
tropism along with changes or shifts occurring in 
them. For example, in 1995, key deletions in TGEV at 

nucleotides 621–681 gave rise to porcine respiratory 
coronavirus which mainly causes respiratory symptoms 
[193]. The variations in mucus structure and mucosal 
components between the two systems may have driven 
TGEV to mutate, enabling it to shift its virus tropism to 
PRCV. Previously in our lab, we analyzed the interac-
tion of pseudorabies virus (PRV, diameter = ∼ 250  nm) 
with porcine respiratory mucus using SPT [194]. Only 
PEGylated particles displayed chaotic Brownian move-
ment in respiratory mucus, while negatively and posi-
tively charged particles, and negatively charged PRV were 
restricted. However, our study in the interaction of TGEV 
and similar-sized control particles showed that both the 
carboxylated (-) and PEGylated (=) particles showed cha-
otic Brownian movement in the intestinal mucus of 3-day 
and 3-week-old pigs [109]. This is likely due to the dif-
ferent composition of respiratory and intestinal mucus. 
Respiratory mucus contains mainly the MUC1/MUC4/
MUC5AB-C complex, while MUC2 is the primary gel-
forming mucin of small intestinal mucus [195]. Further-
more, the diversity of the host’s immune components 
and microflora in mucus from both systems is critical in 
combating the invading pathogens [196]. Another study 
from our lab showed that PRV showed more penetration 
through porcine respiratory mucus at 4  °C compared to 
37  °C after 30  min [197]. However, our study on TGEV 
in the case of 3-week intestinal mucus showed that its 
movement in both short- and long-duration diffusion 
assays showed was hindered at lower temperatures [109]. 
This indicates that intestinal and respiratory mucus 
behave differently when temperature is decreased, fur-
ther highlighting the compositional differences between 
the two. Thus, similar studies can be designed for PRCV 
in terms of respiratory mucus and cross examining of 
both viruses in both types of mucus systems. The inter-
action of PRCV with the respiratory mucus along with 
availability of a different repertoire of available mucin 
glycans can provide a new angle on the shift in tissue tro-
pism. Combining the analysis of physiochemical proper-
ties of porcine respiratory mucus, particle-like behavior 
of PRCV in respiratory mucus and assessing its blocking 
activity offers a lot of opportunities for further research. 
In Fig.  3, a schematic outline of the key compositional 
differences between mucus from the respiratory and gas-
trointestinal systems is presented to understand and aid 
in designing cross-system mucus studies toward unravel-
ling the TGEV/PRCV tissue tropism.

Conclusion
The exploration of intestinal mucus as a defense against 
viral gastroenteritis opens numerous promising research 
pathways. The implications of mucin glycans for patho-
gen protection and the potential therapeutic use of intes-
tinal mucus highlight the multifaceted role of mucus in 
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combating enteric infections. Comparative studies across 
different physiological systems further enhance our 
understanding of viral pathogenesis and tropism. Future 
research should focus on the detailed characterization 
of mucus components, including proteins, lipids, immu-
nological factors and glycans, to uncover their specific 
roles in host-pathogen interactions. Additionally, the 
development of novel therapeutic approaches utilizing 
purified mucins or engineered glycodomains could revo-
lutionize the treatment of enteric infections, particularly 
in vulnerable populations such as newborns and young 
animals. Overall, advancing our knowledge of intestinal 
mucus and its interactions with enteric viruses will not 
only deepen our understanding of viral gastroenteritis 

but also pave the way for innovative strategies to prevent 
and treat these infections. This dynamic field of research 
holds great potential for improving gut health and com-
bating viral diseases.
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