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Abstract 

Background  Campylobacter jejuni and C. coli are the most common causes of bacterial enteritis worldwide whereas 
symptomatic and asymptomatic infections are associated with stunting in children in low- and middle-income coun-
tries. Little is known about their sources and transmission pathways in low- and middle-income countries, and par-
ticularly for infants and young children. We assessed the genomic diversity of C. jejuni in Eastern Ethiopia to determine 
the attribution of infections in infants under 1 year of age to livestock (chickens, cattle, goats and sheep) and other 
humans (siblings, mothers).

Results  Among 287 C. jejuni isolates, 48 seven-gene sequence types (STs), including 11 previously unreported 
STs were identified. Within an ST, the core genome STs of multiple isolates differed in fewer than five alleles. Many 
of these isolates do not belong to the most common STs reported in high-resource settings, and of the six most 
common global STs, only ST50 was found in our study area. Isolates from the same infant sample were closely related, 
while those from consecutive infant samples often displayed different STs, suggesting rapid clearance and new 
infection. Four different attribution models using different genomic profiling methods, assumptions and estimation 
methods predicted that chickens are the primary reservoir for infant infections. Infections from chickens are transmit-
ted with or without other humans (mothers, siblings) as intermediate sources. Model predictions differed in terms 
of the relative importance of cattle versus small ruminants as additional sources.

Conclusions  The transmission pathways of C. jejuni in our study area are highly complex and interdependent. While 
chickens are the most important reservoir of C. jejuni, ruminant reservoirs also contribute to the infections. The cur-
rently nonculturable species Candidatus C. infans is also highly prevalent in infants and is likely anthroponotic. Efforts 
to reduce the colonization of infants with Campylobacter and ultimately stunting in low-resource settings are best 
aimed at protecting proximate sources such as caretakers’ hands, food and indoor soil through tight integration 
of the currently siloed domains of nutrition, food safety and water, sanitation and hygiene.
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Background
Campylobacter jejuni and C. coli are the most com-
mon causes of bacterial enteritis worldwide. The World 
Health Organization estimates these bacteria cause 
166 million cases of gastroenteritis annually [1]. The 
highest incidence rate is observed in low- and middle-
income countries, especially in Africa (2180 cases per 
100,000 persons per year (ppy) versus 350 cases per 
100,000 ppy in North America). Approximately 60% of 
these cases are foodborne. Other transmission patterns 
include animal contact (approx. 15%), water (approx. 
10%), human contact, soil and other unspecified path-
ways (approx. 5% each) [2]. Moreover, the Malnutrition 
and Enteric Disease (MAL-ED) study has suggested 
that symptomatic and asymptomatic infections with 
several enteric pathogens including C. jejuni and C. 
coli are associated with stunting in children in low- and 
middle-income countries [3]. The vaccination of rhe-
sus macaques against C. coli not only reduced the inci-
dence of overt diarrhea but also improved their linear 
growth [4].

We previously reported a high prevalence of bacteria 
of the Campylobacter genus in humans and livestock in 
smallholder households in Haramaya woreda, East Hara-
rghe Zone, Oromia State, Ethiopia [5]. The prevalence 
and load in infants increased significantly with age with 
logistic regression predicting a prevalence of approxi-
mately 90% at 1 year of age. Most infections are asymp-
tomatic, but the bacterial load is positively correlated 
with the risk of diarrhea [6]. The load of Campylobac-
ter in infant stools was greater in girls than in boys and 
increased with increasing food insecurity, different feed-
ing practices (prelacteal feeding, early introduction of 
complementary foods, consumption of any solid foods, 
drinking of raw milk, household ownership of cattle and 
sheep but not chickens or goats), hygiene-related factors 
(improper disposal of infant stools, contact with animals 
or their feces, mouthing soil) and treatment with antibi-
otics in the previous month. Mothers’ handwashing with 
soap and drinking from bottles with nipples were asso-
ciated with lower loads [6, 7]. Two main species were 
found in infants by real-time Polymerase Chain Reaction 
(qPCR) and shotgun metagenomic sequencing: Candida-
tus C. infans (C. infans, 60% at 1 year of age) and C. jejuni 
(50% at 1  year of age). C. upsaliensis was also detected 
but less frequently (20% at 1  year of age). C. coli was 
not detected in infants by shotgun sequencing and was 
detected infrequently (1%) by qPCR [8, 9].

In high-income countries, animals, specifically live-
stock, are considered the primary reservoirs of human 
infections with the well-studied species C. jejuni/coli, 
with foodborne transmission [2], mainly through poul-
try meat [2] as the main pathway. However, less is known 
about their sources and transmission pathways in low- 
and middle-income countries, particularly for infants and 
young children.

The load of C. infans was greater in girls than in boys 
and was also elevated for infants who drank raw milk 
or crawled in areas contaminated with animal feces, 
whereas the load of C. jejuni was greater for infants who 
put soil in their mouths. At both the genus and species 
level, there were mixed and often counterintuitive signals 
related to keeping animals in the home, whether con-
fined or not [6, 8]. These results suggest a complex con-
tamination network among humans, animals and their 
environment.

Source attribution of C. jejuni/coli has largely been 
based on legacy (seven-gene) Multi Locus Sequence Typ-
ing (MLST) [10], using frequency matching models such 
as the Dutch model [11], Hald model [12] and variants 
[13], or population genetic models such as the asym-
metric Island model [14] or STRU​CTU​RE [15]. More 
recently, attribution models based on whole-genome 
sequencing (WGS) data have been developed. WGS 
data enhance the ability to distinguish genetic variations 
and potentially more accurately determine the origin of 
infection-causing isolates [16]. Both core genome MLST 
(cgST) and k-merization have been used for taxonomic 
profiling and are particularly effective for large genomes 
[17–19]. K-mer counting involves the use of short oligo-
nucleotides to compare a sequence to either a reference 
genome or against genome of interest without needing an 
alignment [20]. The use of cgSTs or k-mers for differenti-
ating Campylobacter genomes is based on the concept of 
genomic signatures and builds on the premise that infec-
tions originating from the same source are genetically 
more similar than those from different sources, facili-
tating the tracking of infections across various sources. 
Random forest models may use cgST data following the 
numerical encoding of alleles [21]. Encoding genes with 
the PCO-encoding method [22] incorporates informa-
tion that quantifies the similarity between each pair of 
alleles and addresses issues related to missing alleles and 
new genotypes in observations for prediction. All mod-
els typically assume unidirectional flow from sources to 
sinks. However, a model to include intermediate nodes, 
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which may act as both a source and a sink was developed 
to explore the role of water in the transmission of bacte-
ria from livestock and water birds [23].

This study aims to assess the genomic diversity of C. 
jejuni in infants, humans and livestock in the Haramaya 
woreda, and to determine the attribution of infections 
in infants to livestock (chickens, cattle, goats and sheep) 
and other humans (siblings, mothers) on the basis of the 
genetic population structure of C. jejuni circulating in 
these reservoirs, using four different attribution models. 
This study was restricted to C. jejuni because the second 
dominant species in infants, Candidatus C. infans is not 
yet routinely culturable.

Methods
Isolation and sequencing of Campylobacter from human 
stool and livestock fecal samples
For the isolation of thermotolerant species by direct plat-
ing, one gram of fresh stool/animal feces was suspended 
in 9 ml buffered peptone water (pH 7; BD Difco). 100 µL 
of homogenized samples were spread on CHROMagar 
Campylobacter (CaC, DRG International, Springfield, 
New Jersey USA) using sterile glass beads and incu-
bated for 48  h at 42  °C in microaerobic condition (85% 
nitrogen, 10% carbon dioxide, 5% oxygen) in anaerobic 
jars with GasPak EZ Campy Container System Sachets 
(ThermoFisher Scientific, Waltham, MA, USA). Simi-
larly, for non-thermotolerant species, the same volumes 
of samples (100 µL) were plated on Columbia agar sup-
plemented with 5% defibrinated sheep blood, Skirrow 
supplement (2 µL/mL), amphotericin B (5 µg/mL), cefop-
erazone (8  µg/mL) and Campylobacter growth supple-
ment (ThermoFisher Scientific, Waltham, MA, USA). 
The plates were incubated at 37 °C for 48 h in microaero-
bic condition.

In parallel, samples were also enriched in Preston and 
Bolton broth with a proportion of 1  g feces in 9  ml of 
broth and incubator at 42 °C and 37 °C for 48 h, respec-
tively, as described above. After incubation, 100  µL of 
Preston broth enriched samples were plated onto CaC 
and Bolton broth enriched samples on Colombia agar 
and plates were incubated at either 37 °C or 42 °C [24].

Due to global supply issues during the COVID-19 pan-
demic, we could not directly culture samples received 
before March 2022 and stored all samples to that date in 
20% (w/v) glycerol at − 80  °C. This affected almost 85% 
(1857/2183) of the fecal/stool samples. Preliminary anal-
ysis indicated that up to 99% of the Campylobacter popu-
lation in the feces could not be recovered on CaC within 
the first month of storage; therefore, samples were pre-
enriched in Bolton broth before plating.

Typical Campylobacter colonies (up to 5 per plate) 
were sub-cultured onto a CaC plate and confirmed by 

genus-specific qPCR [25]. Potential thermotolerant and 
non-thermotolerant Campylobacter were characterized 
by streaking the confirmed pure isolate on to two fresh 
CaC plates and incubating at 37  °C and 42  °C in micro-
aerophilic conditions for 48  h. The isolates growing at 
42  °C and 37  °C were recorded as potentially thermo-
tolerant while the isolates growing only at 37  °C were 
recorded as potentially non-thermotolerant. Despite our 
efforts to isolate non-thermotolerant Campylobacter spe-
cies, we were only able to culture one non-thermotoler-
ant isolate, later determined to be C. hyointestinalis. All 
isolates were stored in glycerol at − 80 °C.

For genomic DNA extraction, Campylobacter isolates 
from the freezer stock were grown on a CaC agar plate 
for approximately 36  h under microaerophilic condi-
tion at 42  °C. A loopful of growth was collected from 
the CaC plate, resuspended in 1  mL of Mueller Hinton 
broth (ThermoFisher Scientific, Waltham, MA, USA) 
and genomic DNA was extracted using Promega Wiz-
ard genomic DNA purification kit (Promega, Madison, 
WI, United States) following the manufacturer’s instruc-
tions. The concentration and quality of the DNA were 
determined using NanoDrop 2000 C Spectrophotometer 
(ThermoFisher Scientific, MA, USA). Purified DNA was 
shipped to eight GenomeTrakr Laboratories (FDA, USA) 
for sequencing.

All culturing and DNA extractions were performed in 
a dedicated laboratory at Haramaya University including 
physically separated spaces for sample reception, cultur-
ing, DNA extraction and PCR analysis as reported else-
where [5]. The establishment of the laboratory, including 
back-up electricity and water supplies, was funded by 
Haramaya University and all equipment and supplies 
were sourced in the USA from the project budget and 
shipped under the responsibility of the University of 
Florida (UF). Laboratory staff were trained in person at 
The Ohio State University (OSU) and by in-person vis-
its of experienced microbiologists from OSU and UF. 
During the COVID-19 pandemic, in-person visits were 
replaced by weekly conference calls and ad-hoc follow up 
calls as necessary.

Short-read genomic DNA libraries were pre-
pared with the Illumina DNA prep kit, following the 
PulseNet Sequencing Protocol PNL35 [26]. Samples 
were sequenced using either paired-end 2 × 150  bp or 
2 × 250  bp reads, which vary between sequencing labo-
ratories (see Supplementary file MLST_profiles.xlsx for 
Biosample IDs). The paired-end reads were assessed for 
quality and contamination and trimmed using BBMerge 
(v.38.90) [27] and BBDuk (v.38.90) [28] with the follow-
ing parameters: hammering distance 1, optimal k-mers 
23, quality cutoff Q14 and minimum read length 30 bp, 
with end-trimming of a maximum 1of 0  bp. Species 
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assignment was performed using KMC (version 3.0) 
[29] resulting in the identification of 380 Campylobacter 
jejuni isolates for analysis in this study.

MLST assignment
Legacy MLST profiles (STs) for all C. jejuni isolates 
were determined using the mlst tool [30]. This utilizes 
the most recent update of the PubMLST database [31] 
(updated December 14, 2024), which incorporates the 
seven housekeeping loci scheme, as previously described 
[32]. We identified 11 novel STs and submitted these 
new schemes to PubMLST for the assignment of new 
STs. Core genome MLST (cgST) profiles were assigned 
using a 1,343-loci scheme (Cody et al. [19]), implemented 
through the cgST tool [33]. Missing alleles, which were 
unassigned, were identified using a custom R script and 
were assigned unique identifiers within the dataset. This 
approach ensured that all 1,343 loci were included in 
the analysis. The R script is publicly available at https://​
github.​com/​jmars​hallnz/​cgST. The sample set of 380 
WGS samples included sequences collected from the 
same household and time point, representing different 
colonies obtained during subculturing in the pure isola-
tion process. To create a unique representative dataset, 
we selected the isolates with the highest genomic cov-
erage for each cgST type from each household and time 
point. This filtering resulted in a final WGS dataset com-
prising 287 isolates.

MS tree construction and map
A minimum spanning tree (MST) was constructed using 
the GrapeTree plugin with the MSTreeV2 algorithm, 
which is designed to handle missing data more effectively 
than classical MST methods [34]. The process begins by 
calculating a directed minimal spanning arborescence 
using Edmonds’ algorithm from asymmetric distances, 
with tie-breaking based on allelic distances. Local branch 
recrafting was then performed to remove spurious 
branches.

PERMANOVA
To explore the transmission of C. jejuni at different lev-
els within the sampling hierarchy we performed a nested, 
permutational multivariate analysis of variance (PER-
MANOVA) [35] to estimate the proportion of variance 
in infant cgST profiles attributable to each level, namely 
sample (i.e., multiple isolates from the same infant sam-
ple), infant (i.e., multiple isolates from the same infant 
at different time points), ganda (village) and kebele (the 
smallest administrative unit in Ethiopia, a set of gandas). 
PERMANOVA models were constructed using a cus-
tomised R script (https://​github.​com/​jmars​hallnz/​perma​
nova). Pairwise genetic distances were calculated from 

the cgST profiles to create a distance matrix with values 
in the matrix corresponding to the Gower distance cal-
culated using the vegdist() function in the R pack-
age vegan [36]. Multiple two-level nested models were 
considered: infant within ganda, ganda within kebele, 
infant within kebele and infant time point within infant. 
It was not possible to fit models considering higher-
level nested structures, so only two-level nested models 
are presented. Univariate PERMANOVA models were 
performed for each factor with p-values obtained using 
100,000 unrestricted permutations of raw data.

Diversity and persistence of C. jejuni infections
The isolate set included up to four isolates from the 
same infant sample, while 25 sets of repeat samples from 
the same infant at different timepoints (approximately 
monthly intervals) were also available. We quantified the 
diversity of C. jejuni isolates in these samples by count-
ing the number of isolates by ST/cgST using a bespoke 
coding system in Excel (Supplementary file MLST_pro-
files.xlsx). Similarly, the occurrence of the same or differ-
ent STs/cgSTs in sequential samples from the same infant 
was quantified and summarized in relation to the time 
interval between two samples using pivot tables in Excel.

Attribution
While livestock are commonly recognized as the main 
sources of human infections, humans other than infants 
are exposed to the same contaminated environment as 
the infants are, and they can be considered either as inde-
pendent receiving hosts or as receiving, amplifying hosts 
that transmit infection to infants. Exclusive human-to-
human transmission cycles cannot be excluded a priori. 
We therefore fitted models with only livestock sources as 
well as models with other humans as additional sources 
of infections in infants.

A summary of all fitted models is provided in Table 1. 
All analyses were performed in the statistical language 
R version 4.3.0 or later [37] or Excel (Microsoft Corpo-
ration, Redmond, WA), using dedicated R packages or 
other software as indicated in the text.

Asymmetric Island model
The asymmetric-island source attribution model [14] 
was applied to the cgST data for 287 isolates using the 
islandR package (https://​github.​com/​jmars​hallnz/​islan​
dR). This method assigns sources to isolates by modeling 
both recombination and mutation processes as distinct 
events. In our analysis, the recombination and muta-
tion probabilities were assumed to be constant across all 
sources, resulting in pooled estimates for both processes. 
The model incorporates genetic differences between iso-
lates to estimate the most likely source, accounting for 

https://github.com/jmarshallnz/cgST
https://github.com/jmarshallnz/cgST
https://github.com/jmarshallnz/permanova
https://github.com/jmarshallnz/permanova
https://github.com/jmarshallnz/islandR
https://github.com/jmarshallnz/islandR
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multiple potential sources. From the model estimates, 
the mean and 95% confidence intervals of the posterior 
distribution were calculated to determine the attribution 
percentages for each source. This approach is particu-
larly useful for including recombination and mutation in 
source attribution, enhancing the accuracy of source esti-
mation based on cgST profiles.

PCO model
The PCO source attribution model is a random forest 
model that uses a principal coordinates approach to over-
come the problem of missing levels in the data used for 
prediction. This method uses a target-agnostic approach 
to encode cgST predictor variables by using both the 
cgST allele profiles and Hamming distances between 
allele sequences to determine the similarity between 
pairs of isolates [22]. Analyses were carried out using 
the ranger package [38] and the PCO-encoding method 
(https://​github.​com/​smith​helen/​LostI​nTheF​orest). Esti-
mates of uncertainty are calculated using a probability 
forest with the same set of parameters as the original 
random forest. For each tree in the forest, the probabil-
ity of each human isolate being attributed to each source 
is calculated. These probabilities are then averaged over 
the set of infant isolates, giving an average probabil-
ity of attribution to each source for each tree. The 2.5% 
and 97.5% quantiles are then determined from this set of 
mean probabilities to give a 95% uncertainty interval.

Source/sink model
The role of humans as intermediate hosts for zoonotic 
infections was further explored using a model in which 
they can act both as sources and as a sink. The IslandR 
model was reparametrized to consider the mothers and 
siblings as both receiving infection from the animal res-
ervoirs and being a source of infection for infants. The 
source/sink model was based on an approach developed 
to examine the contribution of water as both a source 
and a sink for human campylobacteriosis in New Zealand 
[23]. In essence, we assume that mother and sibling iso-
lates arise from a mix of the animal reservoirs, whereas 
infant isolates arise from a mix of both the animal 

reservoirs and mothers and siblings. This model is fit 
using the attribution_intermediate() function 
in the islandR package (https://​github.​com/​jmars​hallnz/​
islan​dR).

k‑mer model
The tool KMC (version 3.0) [29] was used to extract 
k-mers with length of k = 9 for each of the samples using 
the short-read sequences. All k-mer frequencies were 
then combined into one matrix using an in-house Python 
script. A recently developed [21] source attribution 
model was applied to the two datasets using the k-mers 
to predict the sources of human campylobacteriosis 
cases. Feature reduction was carried out on the matrix to 
reduce the number of k-mers in the final model using the 
caret package (version 6.0–94) [39] and the Boruta pack-
age (version 8.0.0) [40]. The near-zero-variance method 
was used to reduce the number of 9-mers. The Boruta 
algorithm was then applied to select important attributes 
in the matrix using a random forest classifier. To account 
for the uneven distribution of sources in the samples, all 
sources were upsampled to the highest number of sam-
ples available within a source, so that all sources had the 
same number of samples. Two machine-learning algo-
rithms previously applied successfully in sequencing 
studies were evaluated [41–44]. For the evaluation, the 
data containing k-mers from sources were split into test- 
and training data sets. The training data were then used 
to randomly generate smaller sets of test and training 
data once again to determine which of the two selected 
machine-learning algorithms fit the data best. Each 
smaller test- and training data set was split 70% and 30%, 
respectively, and the test-data were used to evaluate the 
performance of the model using seven-fold cross-valida-
tion. After 10 iterations, the accuracy of each algorithm 
was assessed, and the algorithm with the highest accu-
racy was selected for model construction.

The model with the highest accuracy was constructed 
again following the same steps as for the model selection, 
described previously, and the performance of the model 
was evaluated based on the accuracy of the cross-val-
idation step, the kappa value and the confusion matrix, 

Table 1  Overview of source attribution models

*core genome Sequence Typing
& Markov Chain Monte Carlo

Source attribution model Input data Summary data Attribution pathways Model fitting procedure

Asymmetric Island Assembled contigs cgST* profiles Direct MCMC&

k-mer Raw reads 9-mers Direct Random Forest with feature reduction

PCO Assembled contigs cgST profiles + allele 
sequences

Direct Random Forest without feature reduction

Source-sink Assembled contigs cgST profiles Direct and indirect MCMC

https://github.com/smithhelen/LostInTheForest
https://github.com/jmarshallnz/islandR
https://github.com/jmarshallnz/islandR
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which determines the model’s ability to predict the 
sources of the samples in the source-data. The sensitivity 
and specificity were also reported. Finally, the model was 
applied to isolates from infants. This was done by estimat-
ing the probability of each human case being attributed 
to each of the sources included in the model. Tree-level 
predictions were pooled together to calculate the mean 
probability for each source, with 2.5th and 97.5th per-
centiles providing uncertainty intervals for each case. To 
estimate the uncertainty in the overall mean attribution 
probabilities, we performed 1,000 bootstrap resampling 
iterations. In each iteration, case isolates were sampled 
with replacement, and mean attribution probabilities 
were recalculated. The 2.5th and 97.5th percentiles of the 
bootstrap distributions provided 95% uncertainty inter-
vals for the mean probabilities.

Results
We included WGS data from 380 isolates for attribu-
tion from different sources analysis by k-mers (Table  1) 
and of these, assigned cgST profiles to 287 isolates. The 
majority of human samples other than those from infants 
were collected from siblings and the majority of livestock 
samples were collected from chickens with fewer sam-
ples from ruminant species. Owing to the small num-
ber of isolates from several sources, we ran attribution 
models of infections in infants with two merged source 
groups: other humans (mothers and siblings) and small 
ruminants (sheep and goats). Cattle are often recognized 
as a major reservoir for Campylobacter transmission to 
humans, particularly C. jejuni. By keeping cattle sepa-
rate, their unique role as a distinct source is emphasized. 
Additionally, other studies and risk assessments use 
the "small ruminant" classification for sheep and goats 
because of their shared characteristics. This convention 
supports comparability and consistency across studies.

Genomic diversity of C. jejuni from different sources
The set of 287 isolates included 48 STs. The population 
structure based on cgST is presented as a minimum 
spanning tree (MSTree) in Fig. 1. The tree is fully struc-
tured according to seven-gene STs and isolates within 
the same ST are highly related, differing by fewer than 
five alleles. There were 11 newly assigned STs (37 iso-
lates; see Table S1). Among these, one type was common 
to infants, chickens, cattle and sheep; one was com-
mon to infants and chickens; six were unique to infants; 
and three were unique to chickens (Table  S2). Twelve 
STs were represented by more than 10 isolates, which 
together accounted for almost two-thirds (185/287) of 
all the isolates. Isolates from six of these STs were shared 
among infants, livestock and other humans, whereas six 

were shared only between infants and livestock. Detailed 
data on these isolates are available in the Supplementary 
file MLST_profiles.xlsx.

Diversity and persistence of C. jejuni infections
We obtained multiple isolates of C. jejuni from 81 sam-
ples. Of these, one sample yielded four isolates, 34 
(28 + 5 + 1) samples yielded three isolates, and 46 (*39 + 7) 
samples yielded two isolates. All isolates from the same 
sample were of the same seven-gene ST in 84% (68/71) of 
the samples (Table 2 and supplementary file MLST_pro-
files.xlsx), thus not providing evidence of diversity of STs 
within the host. Two or three different STs were found in 
9 samples, suggesting sequence type diversity within the 
host. The cgST profiles of all the isolates from the same 
sample within the same ST were fewer than five alleles 
different.

Persistence of C. jejuni infections (i.e., isolation of the 
same ST from two sequential samples) was observed 
in 8% (2/25) of sample pairs from the same infant (sup-
plementary file MLST_profiles.xlsx). These pairs were 
taken approximately 1 or 2  months apart. Different STs 
were observed in 84% of the sample pairs, the majority 
of these STs were also 1–2  months apart, but five pairs 
had 3-months intervals and 1 pair had a 4-month inter-
val. Eight percent (2/25) of sample pairs (1- or 2-month 
intervals) provided inconclusive evidence with the same 
STs being isolated in both samples, accompanied by one 
or more different STs.

Spatial clustering
Figure  2 shows the spatial distribution of STs from 
infants. Common STs, such as ST50, ST883 and ST2042 
were found in multiple gandas (villages) and kebeles (the 
smallest administrative unit in Ethiopia). We analyzed 
the distribution of cgST types at different nested levels of 
spatial and temporal sampling using PERMANOVA, esti-
mating the contribution of the variation in cgST alleles 
attributable to kebeles, gandas, infants at different time 
points and infant samples. We tested for significant clus-
tering at each level, using multiple two-level nested mod-
els (Table S3).

Considering infants within kebeles, some 14% of the 
total variation in cgST profiles was between kebeles. 
Most of the total variation was between infants within 
kebeles (54%), and 33% of the variation was within 
infants. There was marginally significant clustering at the 
kebele level (p = 0.03) and highly significant clustering at 
the infant level (p < 0.001).

Considering gandas within kebeles, some 14% of the 
total variation in cgST profiles was between kebeles. 
Most of the total variation was between gandas within 
kebeles (47%), and 40% of the variation was within 
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gandas. There was a tendency toward clustering at the 
kebele level (p = 0.053) and highly significant clustering at 
the ganda level (p < 0.001).

Considering infants within gandas, some 58% of the 
total variation in cgST profiles was between gandas. The 
total variation between infants within gandas was 9%, 
and 33% of the variation was within infants. There was 

no significant clustering at the ganda level (p = 0.29) but 
there was highly significant clustering at the infant level 
(p < 0.001).

Considering samples within infants, some 68% of the 
total variation in cgST profiles was between infants. 
The total variation between samples within infants was 
22%, and 10% of the variation was within infants. There 

Fig. 1  Minimum spanning tree illustrating the distribution of Campylobacter jejuni core genome ST types among human and livestock isolates 
from Ethiopia. Nodes are color-coded according to host type (human or livestock), and each node represents a unique isolate. Solid lines 
between nodes indicate phylogenetic relatedness, and scale bar represents a 600-loci distance. Clusters of nodes sharing identical ST types are 
labeled with the corresponding ST sequence type in black text
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was significant clustering at the infant level (p < 0.01) 
and highly significant clustering at the sample level 
(p < 0.001).

The highly significant clustering at the sample level 
confirms observations in Table  3 of highly related 

isolates from one sample. We, therefore, repeated 
the analysis, using a reduced dataset including only 
unique STs per sample (97 isolates). The results of the 
partitioning of variance at all levels of clustering were 
very similar to those of the full dataset. However, the 

Table 2  C. jejuni isolates included in the k-mer and cgST attribution models

Source group Source k-mer data set Grouped k-mer data 
set

cgST data set Grouped 
cgST data 
set

Infants 229 229 174 174

Other Humans Mothers 3 29 3 20

Siblings 26 17

Chickens 86 86 71 71

Cattle 13 13 6 6

Small Ruminants Sheep 2 24 4 16

Goats 22 12

Total 380 380 287 287

Fig. 2  Spatial distribution of STs from infants in Haramaya woreda, Ethiopia. Solid blue lines indicate kebele boundaries, dots indicate geographic 
position of STs. Shading indicates vegetation density. Haramaya University is in the center of the map, just north of Haro Maya city. Map constructed 
with ggmap, based on OpenStreetMaps
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significance of clustering at the infants within gandas 
changed markedly to no significant clustering at both 
the ganda and infant levels.

Attribution
The attribution results for the Asymmetric Island, PCO 
and k-mer models are summarized in Fig. 3 and Table 4.

The PCO random forest model was trained on the set 
of source isolates using all 1343 cgST genes (as nominal 
predictors). The genes were encoded using the PCO-
encoding method together with a dissimilarity matrix 
of Hamming distances of the nucleotide sequencing 

information between each pair of alleles for each gene. 
Any new alleles in the set of human isolates for predic-
tion were encoded using the method of principal coordi-
nates based on pairwise Hamming distance from the new 
alleles to the alleles in the set of source isolates. The origi-
nal sources of the infant isolates were then predicted.

The k-mer models were built on 131,073 attributes (or 
9-mers), which were then reduced further by the near-
zero variance method which removed few attributes 
from the model, depending on which dataset was mod-
eled. The Boruta algorithm further reduced the matrix by 

Table 3  Multi-Locus Sequence Type diversity in human and livestock samples

*Letters indicate different seven-gene STs, and numbers indicate different cgSTs among isolates from one ST. The number of isolates differs between samples 
and is represented by the number of different letter/number combinations. For example, A1234 indicates four isolates from one sample with the same ST, but all 
different cgSTs, whereas A12B indicates three isolates from one sample of which two with the same ST but different cgSTs, and one isolate with a different ST (and 
consequently also a different cgST). Subscripts indicate patterns with# or without& evidence of sequence type diversity

Isolate pattern* Infant Sibling Mother Cattle Goat Chicken Sheep Total

A1234& 1 0 0 0 0 0 0 1

A123& 25 1 1 0 0 1 0 28

A12& 22 5 0 2 2 7 1 39

A12B# 5 0 0 0 0 0 0 5

AB# 3 0 0 0 0 4 0 7

ABC# 1 0 0 0 0 0 0 1

Evidence of sequence type diversity

No& 48 6 1 2 2 8 1 68

Yes# 9 0 0 0 0 4 0 13

Total 57 6 1 2 2 12 81

Fig. 3  Attribution estimates for C. jejuni infections of infants to livestock and human sources using Asymmetric Island, PCO and k-mer models
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selecting only those that are confirmed to provide enough 
important information to be included in the model.

For the dataset including both humans and animals as 
sources, the near-zero variance method identified two 
attributes with low variance, which were removed from 
the data set. The Boruta algorithm further reduced the 
dataset to include 69 important attributes used for fur-
ther modeling. For the dataset including only animal 
sources, the near zero variance method removed one 
attribute with low variance, whereas the Boruta algo-
rithm further reduced the number of attributes to 23 
used for further modeling. For both datasets, the perfor-
mances of the random forest and the logit-boost algo-
rithms were compared (Table S4). The average accuracies 
obtained from taking the average across ten iterations 
showed that the random forest and the logit boost algo-
rithms performed very similarly in terms of accuracy for 
both data sets. The logit boost performed marginally bet-
ter but could not provide uncertainty intervals compara-
ble to the other approaches. Consequently, we decided to 
use the random forests algorithm.

The final models predicted probabilities for each of 
the C. jejuni infections of infants to originate from each 
of the sources (Table  4). The results were similar for all 
models with most cases being attributed to chickens. 
The asymmetric Island model attributed most infections 
among ruminant sources to cattle, whereas the PCO and 
k-mer models (both machine-learning models) consid-
ered small ruminants more likely. The percentage of cases 
attributed to chickens was lower for the k-mer model 
than for the other two models, both of which use cgST for 
genomic characterization. Although both the k-mer and 
the PCO models are random forest models, the k-mer 
method uses feature reduction to substantially decrease 

the number of variables in the model. The smaller pool of 
predictors means there is less variation in each tree of the 
forest, which potentially explains the smaller uncertainty 
intervals. When other humans are included as putative 
sources, the models estimate that some 16–22% of all 
infant isolates originate from other humans, reducing 
mainly the estimate for chickens.

The source/sink model was run for different source 
combinations (Fig.  4 and Table  5). When considering 
infections of infants from all putative sources indepen-
dently, the results were similar to those of the Island 
model, as expected. When considering infections in 
mothers and siblings from livestock sources, the attri-
bution was almost exclusively to chickens with very low 
percentages attributed to cattle or small ruminants. Like-
wise, if mothers and siblings were considered as inter-
mediate sources between livestock and infants, chickens 
were identified as the main source which then gets 
passed on to infants. This results in a lack of identifiabil-
ity for the attribution to infants when aiming to separate 
the direct chicken route from the indirect chicken route 
through mothers and siblings (Fig. 4d).

Discussion
We used whole-genome-sequencing data to analyze the 
genomic diversity of C. jejuni, and to attribute infections 
to putative livestock and human sources. Among the 287 
isolates, 48 STs were identified, among which 11 were 
previously unreported types. In a meta-analysis of global 
genotypes of C. jejuni, Poorrashidi et  al. [45] reported 
that the six most common STs globally are ST21, ST45, 
ST50, ST48, and ST257. Among these STs, only ST50 was 
found in our study as the most frequent ST. Many of the 
isolates recovered in this study do not belong to the most 

Table 4  Attribution estimates for C. jejuni infections of infants to livestock and human sources using Asymmetric Island, PCO and k-
mer models

*Mean (95% uncertainty interval)

Models and source categories Attribution percentage

Chickens Cattle Small ruminants (goats 
and sheep)

Other humans 
(mothers and 
siblings)

Asymmetric Island model

 Livestock and humans 60.6* (44.4–74.6) 15.2 (4.7–28.5) 6.9 (0.1–14.5) 17.3 (10.0–26.4)

 Livestock 78.1 (61.6–90.1) 17.8 (0.1–30.3) 3.6 (0.0–16.3) –

PCO model

 Livestock and humans 60.2 (47.9–74.0) 4.6 (0.1–10.7) 16.5 (0.1–29.6) 16.3 (0.1–28.3)

 Livestock 72.7 (59.4–86.0) 4.9 (0.1–13.5) 21.9 (0.1–35.1) –

k-mer model

 Livestock and humans 52.3 (48.8–55.9) 8.4 (7.5–9.4) 17.2 (15.4–19.0) 22.0 (19.1–25.0)

 Livestock 62.8 (59.5–65.9) 12.1 (10.4–14.0) 25.0 (22.4–27.9) –
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common STs reported in high-resource settings, and 
many have never been reported before. This is likely to 
be due to sampling bias and limited application of WGS 
in low-resource settings [46]. Of the 87,542 genomes of 
Campylobacter in the PubMLST database, only 386 are 
from Africa (https://​pubml​st.​org/​bigsdb?​db=​pubml​
st_​campy​lobac​ter_​isola​tes&​page=​query​&​genom​es=1, 
accessed December 12, 2024).

C. jejuni ST50 isolates have been frequently reported 
globally from environmental, food and clinical sources. 

Poultry isolates from Oceania, Europe and North Amer-
ica tended to cluster on the basis of the continent where 
the sample was collected [47]. No isolates from Africa 
were included in this study. Other frequent STs in our 
study are ST883, ST19, ST20242 and ST2031. The two 
former STs were found in infants and goats in our study, 
have previously been found in humans (children and 
mothers) in Ethiopia [48] and have been associated with 
a raw cow’s milk outbreak in Finland (ST883) [49] and 
Denmark (ST19) [50], respectively.

Fig. 4  Attribution estimates for C. jejuni infections of infants to livestock and human sources using the source-sink model

https://pubmlst.org/bigsdb?db=pubmlst_campylobacter_isolates&page=query&genomes=1
https://pubmlst.org/bigsdb?db=pubmlst_campylobacter_isolates&page=query&genomes=1
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Several studies have detected a high prevalence of C. 
jejuni in human, livestock and food samples from Ethio-
pia, but only two studies have included the genomic char-
acterization of isolates. Among 14 isolates from dairy 
in the Ethiopian regions of Amhara, Oromia, and the 
Southern Nations, Nationalities, and Peoples (SNNPR) 
between 2020 and 2021, two STs (ST51 and ST2084) 
were detected [51]; neither of these types was identified 
in our study. Another study from the Harar town and 
Kersa district identified 8 distinct STs for 19 Campy-
lobacter strains isolated from children, caretakers and 
potential exposure sources [48]. The most abundant STs 
were ST353, ST19 and ST1365, all of which were also 
found in this study. French et al. [52] studied the genomic 
structure of poultry isolates from Tanzania and human 
isolates from Kenya, and reported that ST353, ST8043, 
ST2122 and ST1932 were the dominant STs (in this 
order). Of these, only ST353 was identified in the cur-
rent study as one of the twelve most frequently occur-
ring types. In both studies, these types were isolated from 
both humans and livestock. These authors also tabulated 
STs as identified in other studies from Africa. Among the 
twelve most common STs identified in our study, ST362 
was identified frequently in South Africa, whereas some 
other STs occurred sporadically in the database. While 
the current results suggest little overlap between types 
in geographically adjacent regions, the genomic diversity 
of C. jejuni and other foodborne pathogens in Africa is 
largely uncharacterized. More generally, WGS-based sur-
veillance is poorly developed in low-resource countries 
[46].

Our isolate collection included several samples from 
which multiple isolates were obtained, offering a unique 
opportunity to assess genomic diversity in single hosts. 
Among stool samples from infants, we detected up to 
four isolates with the same seven-gene ST and only a 

few samples with more than one ST. Within one ST, 
cgSTs had fewer than five alleles difference. Bloomfield 
et  al. [53] studied sixteen isolates from an immunodefi-
cient patient who was colonized by C. jejuni for 10 years 
after an episode of diarrhea. All isolates shared a com-
mon ancestor, coinciding with the onset of symptoms 
for the patient and evidence was found for genetic bot-
tlenecks due to antimicrobial treatment. Djeghout et  al. 
[54] sequenced ninety-two C. jejuni isolates from four 
different patients with gastroenteritis and used Single 
Nucleotide Polymorphisms (SNP) to assess phylogenetic 
relationships. Three patients yielded a single seven-gene 
ST, whereas one patient yielded two different STs. Iso-
lates from one patient were genetically diverse, even 
within one ST (12–43 core non-recombinant SNPs and 
0–20 frame-shifts). These authors concluded that this 
diverse population was unlikely to have evolved from a 
single isolate at the time point of initial patient infection 
and that patients were likely infected with a heterogene-
ous C. jejuni population. However, even upon exposure 
to a heterogeneous population, multiple barriers in the 
host create a strong evolutionary bottleneck, resulting 
in the selection of one single variant causing coloniza-
tion except when the host is exposed to high doses [55]. 
We therefore suggest that in our population of young 
infants, infections are caused mainly by a single transmis-
sion event, followed by microevolution within the host. 
Further phylogenetic analysis of our isolates including 
Average Nucleotide Identity and Single Nucleotide Poly-
morphisms may provide more detailed information but 
was beyond the scope of this study.

A reanalysis of data from the MAL-ED birth cohort 
study suggested that persistent infections with Campy-
lobacter were associated with poorer 9-month linear 
growth. Persistent infections were defined as three or 
more consecutive Campylobacter positive monthly stools 

Table 5  Attribution estimates for C. jejuni infections of infants to livestock and human sources using the source-sink model

*Mean (95% uncertainty interval)

Models and source categories Attribution percentage

Chickens Cattle Small Ruminants (goats 
and sheep)

Other Humans 
(mothers and 
siblings)

To infants from all sources, no intermediate source

 Livestock and humans 58.4* (42.6–73.5) 17.2 (3.9–31.1) 7.0 (1.1–14.4) 17.4 (10.3–26.3)

To mothers and siblings from livestock, ignoring infants

 Livestock 92.2 (67.4–99.9) 2.9 (0.0–18.5) 5.1 (0.0–25.1) –

To infants from livestock via mother and siblings

 Livestock 92.2 (69.3–99.9) 3.3 (0.0–20.1) 4.5 (0.0–21.6) –

To infants from all sources, mothers and siblings as intermediate sources

 Livestock and humans 50.9 (0.3–88.0) 16.2 (2.6–29.0) 2.8 (0.0–14.7) 30.0 (0.0–86.8)
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by qPCR [56]. However, in the main text the authors state 
that “persistent Campylobacter infections cannot be dif-
ferentiated from recurrent reinfections with epidemio-
logic data alone” and suggest the term persistent carriage 
would better describe the qPCR results. Because of the 
longitudinal nature of our study, we were able to evaluate 
temporal patterns of genotype diversity in infants. Repeat 
isolates of the same ST at two different time points (1 
or 2 months apart) were observed but in most cases, we 
observed different STs. This suggests a dominant pattern 
of clearance of one type and new infection by other types 
within a time interval of one to 4 months, which is con-
sistent with findings from a Markov Chain model applied 
to the same MAL-ED dataset [57]. These findings are 
further supported by PERMANOVA, indicating a high 
level of clustering of isolates from the same sample, but 
no significant clustering of isolates from the same infant 
at different time points. The clustering at the kebele level 
suggests that there is localized, within kebele transmis-
sion which is independent of the clustering observed 
within samples and between samples from the same indi-
vidual over time.

We used two different methods (cgST and k-meriza-
tion) to characterize the genomic diversity of our iso-
lates and two types of models (population genetics and 
machine learning) to attribute infections in infants to 
putative sources. Chickens were the main source of infec-
tion with model uncertainty in the proportion of infec-
tions attributed to cattle or small ruminants. When other 
humans are included as possible sources, attribution to 
livestock decreases but chickens remain the main source. 
Neither the Asymmetric Island method using cgST nor 
the random forest methods using cgST or k-mers can 
determine directionality. The assumption is that there is 
unidirectional flow from any of the included sources to 
the receiving host (sink). The “source-sink” model relaxes 
this assumption in the sense that some compartments 
are considered both as sources and as sinks. This model 
was originally applied to evaluate the role of water as a 
sink for contamination by water birds and as a source for 
human infections [23]. We applied this model to study 
the role of other humans as sinks from infections from 
livestock and as sources for infections in infants. The 
model suggested that other humans are largely infected 
by chickens, and that these infections may be transmitted 
to infants. We cannot conclude whether other humans 
act as mechanical vectors or if they are amplifying hosts.

Our source attribution results may be biased towards 
chickens because of the substantially greater number 
of isolates than those from other livestock and human 
sources. For example, isolates from goats and siblings 
frequently occurred among the top twelve STs but less 
frequently among rare STs. Nevertheless, the use of 

high-resolution genome sequencing data, and the simi-
lar findings from multiple models based on different 
underlying assumptions, suggest that any bias attributed 
to unbalanced sampling is unlikely to affect the conclu-
sion that chickens are the most important animal reser-
voir for infant infections in this study. Nevertheless, as a 
more important role of ruminants cannot be ruled out, 
control strategies aimed at eliminating transmission from 
the chicken reservoir only may not be effective. Addition-
ally, the degree of transmission between chickens and 
ruminants is unknown but is likely to occur, particularly 
in areas where the animals are not confined to barns or 
other housing facilities.

Notably, most of the isolates were from older infants, 
because of increasing prevalence with age. Furthermore, 
this study was undertaken during the global COVID-
19 pandemic and early samples could not be cultured 
because of global supply chain issues and samples were 
preserved by freezing. Even though we stored the samples 
in glycerol, recovery was strongly affected. Additionally, 
species-specific qPCR results indicated that Candida-
tus C. infans is more prevalent in infants than C. jejuni 
is (70% at 1  year of age). This species has mainly been 
detected in other humans, with low levels of detection in 
livestock [8], suggesting this species is anthroponotic in 
nature with occurrence in livestock as a reverse zoono-
sis, or even merely passing through the animal gut from 
a highly contaminated environment, where open defeca-
tion is common [6].

The transmission pathways of C. jejuni in our study 
area are highly complex and interdependent. The 
EXCAM study enrolled 79 participating households from 
the participants in this study and in the same time frame 
employed behavioral observations, microbiological anal-
ysis and mathematical modeling to create an agent-based 
exposure model framework to quantify the exposure to 
generic Escherichia coli through different pathways in the 
first and second half years of life of the infants. The major 
sources of exposure to E. coli were food and breastfeed-
ing in the first half year of life and food and soil in the 
second half year of life. Caretakers’ hands are the main 
sources of contamination of both food and breast sur-
faces [58].

Conclusions
Many of the C. jejuni isolates identified in this study do 
not belong to the most common STs reported in high-
resource settings. Among the six most common global 
STs, only one was found in our study area. Isolates from 
the same infant sample were highly related, isolates from 
consecutive infant samples usually had different STs, sug-
gesting rapid clearance and new infection. The transmis-
sion pathways of C. jejuni in our study area are highly 
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complex and interdependent. While chickens are the 
most important reservoir of C. jejuni in infants, rumi-
nant reservoirs also contribute to the infections. Model 
predictions differed in terms of the relative importance 
of cattle versus small ruminants as additional sources. 
Infections from chickens are transmitted with or without 
other humans (mothers, siblings) as intermediate sources 
and the role of human–human transmission in infancy 
needs to be further elucidated. To reduce the coloniza-
tion of infants with Campylobacter and ultimately miti-
gate stunting in low resource settings, we recommend 
to initially focus on protecting proximate sources. This 
includes ensuring the cleanliness of caretakers’ hands 
food and indoor soil Achieving these goals requires a 
tight integration of the currently siloed domains of nutri-
tion, food safety and water, sanitation and hygiene.
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