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Abstract 

Background Pancreatic cancer (PC) presents a significant challenge in oncology because of its late-stage diagnosis 
and limited treatment options. The inadequacy of current screening methods has prompted investigations into stool-
based assays and microbial classifiers as potential early detection markers. The gut microbiota composition of PC 
patients may be influenced by population differences, thereby impacting the accuracy of disease prediction. 
However, comprehensive profiling of the PC gut microbiota and analysis of these cofactors remain limited. Therefore, 
we analyzed the stool microbiota of 33 Finnish and 50 Iranian PC patients along with 35 Finnish and 34 Iranian 
healthy controls using 16S rRNA gene sequencing. We assessed similarities and differences of PC gut microbiota 
in both populations while considering sociocultural impacts and generated a statistical model for disease prediction 
based on microbial classifiers. Our aim was to expand the current understanding of the PC gut microbiota, discuss 
the impact of population differences, and contribute to the development of early PC diagnosis through microbial 
biomarkers.

Results Compared with healthy controls, PC patients presented reduced microbial diversity, with discernible 
microbial profiles influenced by factors such as ethnicity, demographics, and lifestyle. PC was marked by significantly 
higher abundances of facultative pathogens including Enterobacteriaceae, Enterococcaceae, and Fusobacteriaceae, 
and significantly lower abundances of beneficial bacteria. In particular, bacteria belonging to the Clostridia class, 
such as butyrate-producing Lachnospiraceae, Butyricicoccaceae, and Ruminococcaceae, were depleted. A microbial 
classifier for the prediction of pancreatic ductal adenocarcinoma (PDAC) was developed in the Iranian cohort 
and evaluated in the Finnish cohort, where it yielded a respectable AUC of 0.88 (95% CI 0.78, 0.97).

Conclusions This study highlights the potential of gut microbes as biomarkers for noninvasive PC screening 
and the development of targeted therapies, emphasizing the need for further research to validate these findings 
in diverse populations. A comprehensive understanding of the role of the gut microbiome in PC could significantly 
enhance early detection efforts and improve patient outcomes.
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Introduction
Despite significant declines in overall cancer mortality in 
recent decades, pancreatic cancer (PC) remains a formi-
dable challenge [1, 2]. In 2017, PC accounted for 1.8% of 
new cancer cases worldwide and 4.6% of cancer-related 
deaths [3]. With higher sociodemographic status linked 
to this malignancy and as living standards rise in low- 
and middle-income countries, the global burden of PC is 
increasing, with death rates projected to nearly double in 
the next 40  years [3]. Tumor resection, often combined 
with (neo)adjuvant therapy, is currently the only cura-
tive option. However, due to late-onset and nonspecific 
symptoms, PC is frequently diagnosed at an advanced, 
unresectable stage [4]. No early detection screening tests 
are available at present [5, 6]. Current diagnostic meth-
ods for PC, including computed tomography and mag-
netic resonance imaging, are typically employed only 
after symptom onset [7]. Serum protein carbohydrate 
antigen 19–9 (CA19-9) is used for disease monitoring 
but is unsuitable for early screening because of its low 
sensitivity (79–81%) and low positive predictive value 
(0.5–0.9%) in symptomatic patients [8, 9]. Various early 
screening strategies currently under investigation involve 
biomarkers based on proteins and nucleic acids, such as 
circulating tumor cells, circulating tumor DNA, micro-
RNAs, and exosomes, in biofluids such as blood, urine, 
stool, and saliva [10, 11]. Stool-based sampling is particu-
larly promising because it is noninvasive, cost-effective, 
and can be conveniently performed at home [12]. Dif-
ferentially abundant gut microbes have been proposed as 
stool biomarkers [13].

The pancreas, which is connected to the small intestine 
via the pancreatic ducts, interacts closely with the gut 
microbiota. Intestinal bacterial metabolites can induce 
peptide expression in pancreatic β-cells, which in turn 
can regulate the composition of the gut microbiota [14]. 
Pancreatic dysfunction due to inflammation or disease 
may alter these secretions, possibly impacting the com-
position, diversity, and functions of the gut microbiota 
[14]. Disrupted homeostasis in microbial communities, 
termed dysbiosis [15], has been associated with various 
cancers, particularly those affecting the gastrointestinal 
tract, such as gastric and colorectal cancer (CRC) [15–
19]. Characteristic microbiota profiles have also been 
identified in PC, both in the gut and other body sites [20]. 
These profiles may have potential as biomarkers for PC 
screening and surveillance [13, 21]. Unfortunately, find-
ings in PC remain sparse, sometimes contradictory, and 
difficult to generalize. Lifestyle, geographic location, and 
population differences significantly influence the gut 
microbiota composition [22, 23] and must be consid-
ered in microbiome-based biomarker research. However, 

comprehensive profiling of the PC gut microbiota and 
analysis of these cofactors remain limited.

This study explored the gut microbiota of PC patients 
from Finland and Iran. Our objectives were to identify 
characteristic gut microbiota traits in both populations, 
assess similarities and differences while considering soci-
ocultural influences, and generate a statistical model for 
disease prediction based on a panel of microbial mark-
ers characteristic of PC in both cohorts. Our aim was to 
expand the current understanding of the PC gut micro-
biota, discuss the impact of population differences on 
the PC microbiota, and contribute to the development of 
early screening methods for this malignancy.

Material and methods
Study population
In this observational case‒control study, we analyzed the 
stool microbiota of 83 PC patients (33 Finnish and 50 
Iranian patients) and 69 healthy controls (HCs, 35 Finn-
ish and 34 Iranian controls) via amplicon sequencing of 
the bacterial 16S rRNA gene. All patients included in the 
study were diagnosed with pancreatic ductal adenocarci-
noma (PDAC), the most common type of PC. The exclu-
sion criteria for patients and controls were antimicrobial 
treatment for up to 3  months and treatment for other 
kinds of cancer for up to 5 years before sample collection.

Among individuals who underwent pancreatic surgery, 
53 Finnish patients were recruited at the surgical depart-
ment of Helsinki University Hospital, Finland, between 
March 2021 and May 2022. After excluding patients with 
diagnoses other than PDAC or those who did not meet 
the criteria, 33 individuals remained. Of these, 12 individ-
uals had received neoadjuvant chemotherapy treatment, 
and 22 individuals had undergone endoscopic retrograde 
cholangiopancreatography (ERCP) and biliary stenting 
before sampling. This was considered during data analy-
sis and interpretation. 35 Finnish HCs were recruited 
among spouses and acquaintances of the patients, among 
others. Lifestyle and health-related data of patients and 
controls were acquired through a questionnaire, and 
patients’ clinical characteristics were retrieved from the 
Finnish Patient Data Repository. The Finnish population 
consisted of 64 Finns and 4 other Europeans of Cauca-
sian ethnicity living in Finland. Participants with Finnish 
mother tongue and typical Finnish first and last names 
were considered ethnically Finnish.

The Iranian participants were recruited between March 
and October 2021. Stool samples were collected prior 
treatment from 60 patients newly diagnosed with PDAC 
at Taleghani Hospital, Tehran, Iran. After the exclusion of 
samples that did not meet all eligibility criteria, 50 cases 
remained. 34 Iranian HCs were included in this study, 
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recruited amongst healthy patient relatives, hospital staff, 
and healthy individuals visiting the hospital for disease 
screening. Clinical and health-related data were obtained 
through a questionnaire. The Iranian population 
consisted of Iranians living in Iran, encompassing 
various ethnic groups such as Pars, Kurds, Lor, Baluch, 
and Bakhtiari. In both cohorts, over 60% of patients 
suffered from comorbidities such as hypertension, 
hypercholesterolemia, type 2 diabetes mellitus, asthma, 
coronary artery disease, chronic gastrointestinal 
inflammation, and rheumatoid arthritis. Likewise, 
40–50% HCs suffered from similar medical conditions 
as the patients, albeit at lower prevalences. All HCs were 
cancer-free and without any history of cancer. 21% of the 
Finnish and 6% of the Iranian patients had suffered from 
previous cancers more than 5 years before participating 

in this study. The flowchart below (Fig.  1) provides an 
overview of the study design and the sample sizes, and 
Table 1 displays the clinical and lifestyle characteristics of 
the study participants.

This study was approved by the Ethical Review Board 
of the Hospital District of Helsinki and Uusimaa, Finland 
(HUS/1763/2020), and the Clinical Research Ethics Com-
mittee of Shahid Beheshti University of Medical Sciences 
and the Ethics Committee of Taleghani Hospital, Tehran, 
Iran (IR.SBMU.RIGLD.REC.1398.039). Written informed 
consent was obtained from all participants before sample 
collection.

Stool sample collection, storage, and DNA extraction
The Finnish stool samples were collected into 
 INVITEK® Stool Collection Tubes with DNA Stabilizer 

Fig. 1 Study design overview and sample sizes. This figure provides a comprehensive overview of the study design, detailing the recruitment 
and screening process for pancreatic ductal adenocarcinoma (PDAC) patients and healthy controls in the Finnish and Iranian cohorts. FHC, Finnish 
HC; FPDAC, Finnish PDAC; HC, healthy control; IHC, Iranian HC; IPDAC, Iranian PDAC; PDAC, pancreatic ductal adenocarcinomaa
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(Invitek Molecular, Berlin, Germany) according to the 
manufacturer’s instructions, stored at + 4 °C for 0–5 days, 
aliquoted, and preserved at − 20  °C for 1–14  months 
until further use. After the samples were thawed at room 
temperature and vortexed, they were prepared for DNA 
extraction by combining 200  μl of sample suspension 
with 800 μl of lysis buffer, homogenized by bead beating 
with 0.5  g × 0.1  mm and 0.1  g × 0.5  mm glass beads 
(MoBio laboratories, Carlsbad, CA, USA) at 2500  rpm 
and 4.04 m/s for 2 × 30 s with a Bead Rupture Elite Bead 
Mill Homogenizer (Omni International by PerkinElmer, 
Waltham, MA, USA), followed by 5 min of centrifugation 
at 15,000 ×g. The Iranian stool samples were collected in 
Eppendorf tubes, snap frozen at − 80  °C and stored for 
0–9  months until their shipment to Finland on dry ice, 
where they were stored at − 20  °C for 5  months, due to 
organizational circumstances. To prepare the Iranian 
samples for DNA extraction, we attempted to mimic the 
collection and thawing procedures of the Finnish samples 
as closely as possible by vortexing 200 mg of frozen stool 
with 1 ml  INVITEK® DNA Stabilizer (Invitek Molecular, 
Berlin, Germany), combining 200  μl sample suspension 
with 800  μl lysis buffer, and further homogenizing 
and handling them in the same way as the Finnish 
samples described above. Automated DNA extraction 
was performed simultaneously for all samples on the 
chemagic™ 360 instrument using the chemagic™ DNA 
Stool 200 Kit H96 (PerkinElmer, Waltham, MA, USA), 
following the manufacturer’s instructions. The DNA 
concentration was spot-checked with the Qubit dsDNA 
HS Assay Kit and the Qubit 2.0 fluorometer (Thermo 
Fisher Scientific, Waltham, MA, USA), and DNA quality 
was assessed with the Agilent 2200 TapeStation and the 

Genomic DNA Screen Tape Assay (Agilent Technologies, 
Inc., Santa Clara, CA, USA).

16S rRNA gene sequencing
The V4 variable region of the bacterial 16S rRNA gene 
was amplified using the Earth Microbiome primers 
515F-Y [24] and 806R [25] with a protocol adapted from 
Mäki et al. [26]. In brief, the qPCR mixtures (25 μl) con-
sisted of 1 × Maxima SYBR Green/Fluorescein qPCR 
Master Mix (Thermo Fisher Scientific, Waltham, MA, 
USA), 0.4  μM reverse and forward primers and 6  ng 
of  template DNA. The thermal conditions were ini-
tial denaturation  at 95  °C for 10  min, followed by 30 
cycles at 94  °C for 30 s, 52  °C and 72  °C for 60 s, and a 
final extension at 72 °C for 5 min (C1000 ThermalCycler, 
Bio-Rad Laboratories, Hercules, CA, USA). Secondary 
PCR with 10  cycles was conducted  using fusion  prim-
ers IonA-barcode-M13: M13-515F-Y (in 1:0.1 ratio) 
and P1-806R  (linker M13 sequence TGT AAA ACG 
ACG GCC AGT )  to  attach  Ion Torrent  barcodes and 
sequencing adaptors to the amplicons, as described 
by Mäki et  al.  [26]. The products  were purified using 
the AMPure XP purification system (Beckman Coul-
ter Life Sciences, Indianapolis, IN, USA). Sample con-
centrations were  analyzed using the Qubit dsDNA HS 
assay (Thermo Fisher Scientific Inc., USA), and samples 
were  pooled in equimolar concentrations. The sample 
pool was sequenced uni-directionally on the Ion Torrent 
PGM™ System with the Ion PGM™ Hi-Q View chemistry 
(Thermo Fisher Scientific Inc., Waltham, MA, USA)  in 
the sequencing facility of the Department of Biologi-
cal and Environmental Sciences, University of Jyväskylä, 
Finland.

Table 1 Clinical and lifestyle characteristics of the pancreatic cancer patients and controls included in this study

a Given as mean ± standard deviation
b Including ex-smokers with smoking cessation < 10 years ago
c Significant (< 0.05) p values are bolded. Significance was tested by Student’s t-test for continuous variables and Wald  H0 test for categorical variables. BMI, body mass 
index; HC, healthy control; NA, not available; PDAC, pancreatic ductal adenocarcinoma

Variable Finnish cohort Iranian cohort

PDAC HC p  valuec PDAC HC p  valuec

Samples included (n) 33 35 50 34

Agea (years) 69 ± 8 65.0 ± 10.3 0.109 62.36 ± 11.9 40.4 ± 11.6  < 0.001
Sex (% female) 57.6 60.0 0.839 40.0 52.9 0.242

BMIa (kg/m2) 24.8 ± 4.2 26.6 ± 4.4 0.096 NA NA

Biliary stent (%) 67.7 0 0 0

Neoadjuvant treatment (%) 36.4 0 0 0

Smokersb (%) 40.0 28.6 0.332 32.7 11.8 0.011
Alcohol use (%) 63.0 51.4 0.364 3.8 8.8 0.359

Previous cancer 21.2 0 6.0 0
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Statistical and bioinformatic analysis
Statistical analysis
Patient metadata and sequencing results were ana-
lyzed with Microsoft Excel (version 2408 build 
16.0.17928.20114, Redmond, WA, USA)  and IBM 
SPSS Statistics (version 29.0.1.0,  Chicago, IL, USA). 
Descriptive statistics are presented as percentages or 
means ± standard deviations. Statistical differences were 
tested with the Student’s t-test for continuous variables 
(age, body mass index (BMI)) and the Wald  H0 test for 
categorical variables (sex, smoking, alcohol consumption, 
comorbidities), and p values less than 0.05 were consid-
ered significant. For power analysis, we calculated post-
hoc statistical power (two independent study groups, 
dichotomous) of the main differential phyla, families, and 
genera, using relative abundances between patients and 
controls, with type I/II errors set at α = 0.05.

Microbial profiling
The microbial community composition and diversity 
were analyzed using QIAGEN CLC Genomics Work-
bench 24.0, CLC Microbial Genomics Module, ver-
sion 24.0 (Qiagen, Aarhus, Denmark). Raw reads from 
16S rRNA gene amplicon sequencing were filtered and 
trimmed. Reference-based OTU clustering was per-
formed at 97% similarity using the Silva SSU database 
(version 138.1, 99% full-length sequences) [27] as a ref-
erence dataset, with a parameter setting at the best 
matching result, the minimum number of duplicates for 
specific read-data set at 2, chimera crossover cost set at 
6, and Kmer size set at 2 (see [28] for further details). 
The group differences in the alpha diversity of the gut 
microbiota (Shannon entropy, i.e., species diversity, and 
Chao1 index, i.e., species richness) and phylogenetic 
diversity were analyzed with the Kruskal–Wallis test. 
For these diversity analyses, the read depth was rarefied 
to 5207 reads per sample. The gut microbiota beta diver-
sity analysis was based on the Bray–Curtis distance and 
PERMANOVA (PERmutational Multivariate ANalysis 
Of Variance) between the groups, and the results were 
visualized through principal coordinate analysis (PCoA). 
In addition to analyzing the main groups, we also tested 
several covariate groups by PERMANOVA, including age 
group, sex, BMI, alcohol consumption, smoking, neoad-
juvant treatment, and biliary stenting. After removing 
chloroplasts and mitochondria and filtering out OTUs 
present in fewer than 5 samples, we performed differen-
tial abundance analysis (DAA) via the generalized linear 
model (GLM), which assumes that abundances follow 
a negative binomial distribution, as described [29]. We 
used the default parameter settings and added correc-
tions for the covariates age group, sex, and smoking. This 
was followed by Benjamini–Hochberg correction for 

multiple testing. Statistical significance was set at an FDR 
(false discovery rate) of p < 0.05. To obtain a better over-
view of the differentially abundant features, we generated 
subtables of the OTU abundance table, grouped them 
according to the taxonomic levels of phylum, class, fam-
ily, and genus, and analyzed them once more with GLM, 
using the same settings and corrections as described 
above. Since certain Clostridiales strains have been 
shown to mediate anticancer immune responses [30], we 
paid particular attention to families and genera belonging 
to the class Clostridia, especially those with lower abun-
dance in PDAC. The main results were visualized in Venn 
diagrams using CLC Microbial Genomics Module and 
in bar diagrams and heatmaps using Microsoft Excel. To 
further explore and visualize the taxonomic differences 
between the groups, we used linear discriminant analy-
sis effect size (LEfSe) [31]. An LDA (linear discriminant 
analysis) score of > 4 and an alpha p value of < 0.01 were 
considered significant.

Gut microbial function prediction and pathway analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
functions of the OTUs were predicted using CLC 
Microbial Genomics and Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States 
(PICRUSt) software [32]. The group differences of these 
predicted functions were then explored in Microbi-
omeAnalyst surroundings [33], using low count filtering 
(minimum count 4 and 20% prevalence in samples), low 
variance filtering with an interquartile range, and cumu-
lative sum scaling. Differential abundance analysis of 
the predicted KO (KEGG Orthology)-term features was 
performed with Microbiome Multivariable Association 
using Linear Models2 (MaAsLin2 [34]) and LEfSe, with 
the statistical significance set at FDR p < 0.05. In addition, 
we performed a pathway analysis in MicrobiomeAnalyst 
to identify the KEGG pathways associated with the dif-
ferential predicted functions. The results were visualized 
through principal component analysis (PCA) and LEfSe.

Statistical modeling for the prediction of PC, and model 
evaluation
This part of the analysis was performed in R (version 
4.3.1) [35], and the statistical significance was set at 
p < 0.05. For the development of a statistical model for PC 
prediction, we used the larger Iranian cohort (34 patients 
and 50 controls) as the training data and the smaller 
Finnish cohort (33 patients and 35 controls) for exter-
nal validation to assess the robustness and generalizabil-
ity of the models across a geographically and ethnically 
distinct population. To generate a microbial classifier 
for PC prediction, microbial taxa (referred to as “vari-
ables”) on phylum, family, and genus levels were selected 
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by two complementary approaches: random forest (RF) 
and logistic regression (LR). RF was used to rank vari-
ables based on their contribution to model performance, 
as measured by the Mean Decrease GINI (MDG) [36], 
which included a tenfold cross-validation tuning of the 
RF parameters with ten iterations. Concurrently, univari-
ate LR was conducted to evaluate the association of each 
variable with the outcome, followed by multivariate LR to 
assess combined effects and adjust for confounding fac-
tors. Variables were selected based on their contribution 
to the model’s area under the curve (AUC). The selected 
variables from both methods were then combined to 
develop multiple models, employing machine learning 
(ML) algorithms that included logistic regression (LR), 
naïve Bayes (NB), support vector machines (SVMs), neu-
ral network (NN), and decision trees (DTs) [37–39]. To 
increase the precision of disease prediction, each ML 
algorithm was subjected to a fine-tuning process consist-
ing of fivefold cross-validation with ten iterations. For 
determining the best predictive performance, each model 
was then evaluated in the Finnish cohort by the area 
under the receiver operating characteristic (ROC) curve, 
followed by sensitivity (SE), specificity (SP), positive pre-
dictive value (PPV), negative predictive value (NPV), and 
accuracy (ACC). As recommended by Hosmer et al., an 
AUC of 0.5 implied a lack of discrimination (i.e., the abil-
ity to distinguish patients with or without disease), an 
AUC of 0.7–0.8 was acceptable, 0.8–0.9 was excellent, 
and > 0.9 was considered exceptional [40].

Results
16S rRNA gene amplicon sequencing statistics 
and post‑hoc power calculations
After trimming and quality filtering, 1,923,005 reads 
were analyzed, with an average of 12,651 reads per sam-
ple (range: 6904–50,392, SD: 4566). To determine statis-
tical power, we performed post-hoc power calculations 
with the relative abundances of the main differentially 
abundant taxa. Due to our rather small sample size, the 
highest power values were around 30%. For details on 
sequencing statistics and power calculations see Table S1 
(Additional file 1).

Alpha diversity is decreased in the PC gut microbiota
Finnish and Iranian PDAC patients presented 
significantly lower alpha diversity indices than healthy 
controls did. The Shannon entropy, Chao 1 index, and 
phylogenetic diversity were significantly reduced in 
PDAC patients within both populations (Fig.  2A–C). 
Additionally, in the integrated dataset, when the Finnish 
and Iranian groups were combined, PCs presented 
significantly lower alpha diversity than HCs did (Figure 
S1A, see Additional file  2). However, comparisons 

between the individual groups (FPDAC vs. IPDAC and 
FHC vs. IHC, Fig.  2A–C) and between the populations 
(All Finns vs. all Iranians, Figure S1B, Additional file  2) 
revealed no significant differences.

The testing of covariates indicated no significant 
impact of age, alcohol consumption, biliary stenting, neo-
adjuvant treatment, sex, or smoking on microbial diver-
sity in the Finnish cohort (Figures S1C-S1E, S1G-S1I; see 
Additional file 2). Nevertheless, obese Finns had signifi-
cantly lower species richness (Chao 1) than did normal-
weight individuals (Figure S1F, Additional file  2). In the 
Iranian cohort, the covariates smoking and age had sig-
nificant impacts on alpha diversity. Both the phylogenetic 
diversity and the species richness (Chao 1) in individu-
als younger than 40 years were significantly greater than 
those in individuals between 40 and 60 years of age and 
those over 60 years of age, respectively (Figures S1J and 
S1M, Additional file  2). In addition, both the Shannon 
entropy and Chao 1 index were significantly lower in 
smokers than in nonsmokers.

Microbial community composition varies 
between the groups
A total of 16,343 OTUs were identified and assigned to 
15 phyla, 26 classes, 110 families, and 348 genera. The 
average community composition at different taxonomic 
levels is presented in Fig.  3A and Table  S2, Additional 
file 3.

The relative abundance of the main phyla in the Finn-
ish PDAC gut microbiota was 41% Firmicutes, followed 
by 40% Bacteroidota, 8% Proteobacteria, 5% Verrucomi-
crobiota, 3% Actinobacteriota, and 1% Fusobacteriota. 
Compared to that, Finnish HCs had higher Firmicutes 
(50%), lower Bacteroidota (34%), Proteobacteria (5%), 
Verrucomicrobiota (4%), and Fusobacteriota (< 0.01%) 
but higher Actinobacteriota (4%) relative abundances. 
In contrast, the relative abundances of the Iranian PDAC 
gut microbiota were 48% Firmicutes, 25% Bacteroidota, 
15% Proteobacteria, 6% Actinobacteriota, and 5% Ver-
rucomicrobiota, and their respective controls had higher 
Firmicutes (59%), lower Bacteroidota (23%), Proteo-
bacteria (5%), and Verrucomicrobiota (3%), and higher 
Actinobacteriota (9%) relative abundances. The top 
ten genera in Finnish PDAC patients were Bacteroides, 
Alistipes, Faecalibacterium, Akkermansia, Parabacte-
roides, Bifidobacterium, Escherichia-Shigella, Roseburia, 
Ruminococcus, and Subdoligranulum. In Iranian PDAC 
patients, they were Bacteroides, Faecalibacterium, Bifido-
bacterium, Agathobacter, Prevotella_9, Subdoligranulum, 
Alistipes, Ruminococcus, Blautia, and Akkermansia. See 
Table S3, Additional file 3, for details.
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Gut microbial beta diversity differs significantly 
between pancreatic cancer patients and healthy controls 
and between Finns and Iranians
The PCo plot of the Bray‒Curtis distances clearly sepa-
rated the clinical groups (FPDAC, FHC, IPDAC, and 
IHC) by cancer status and population (Fig.  2D). PER-
MANOVA confirmed significant differences in microbial 
community composition between patients and controls 
within and between cohorts (p < 0.0001), with varying 
magnitudes of differences (Table 2).

The analysis of covariates by PERMANOVA revealed 
no significant differences between treated and untreated 
patients or between those with and without biliary stents 
in the Finnish cohort. In the Iranian cohort, significant 
differences were detected between age groups, sexes, and 
smoking statuses (Table S3, Additional file 4).

The PC gut microbiota has a distinct profile 
in both populations
Overlapping and distinct taxa in PDAC across Finnish 
and Iranian cohorts
Statistical comparisons between PDAC patients and HCs 
yielded 535 differing OTUs in the Finnish cohort and 322 
differing OTUs in the Iranian cohort. When comparing 
Finnish and Iranian PDAC patients, 929 OTUs differed, 
whereas 241 OTUs varied between the HCs of both 
cohorts (Fig. 3B).

Phylum‑level differences
Compared with their respective HCs, PDAC patients 
in both populations presented significantly greater 
abundances of Fusobacteriota and Synergistota. 
Additionally, Iranian PDAC patients vs. HCs had higher 
abundances of Verrucomicrobiota and Proteobacteria 
and a lower abundance of Elusimicrobiota, whereas 
Finnish patients had a greater abundance of 
Campylobacterota than their respective HCs (Fig. 4A, B, 
D; Table S4; see Additional File 5).

Fig. 2 Gut microbiota diversities of Finnish and Iranian PDAC patients and healthy controls. A Alpha diversity: Shannon entropy (i.e., species 
diversity), B alpha diversity: Chao1 index (i.e., species richness), and C phylogenetic diversity. D Beta diversity: Principal coordinate (PCo) plot 
of the Bray–Curtis distance. FHC, Finnish HC; FPDAC, Finnish PDAC; HC, healthy control; IHC, Iranian HC; IPDAC, Iranian PDAC; PDAC, pancreatic 
ductal adenocarcinoma
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Family‑level differences
DAA identified 26 families that differed between 
patients and controls in the Finnish cohort and 23 in 
the Iranian cohort (Fig.  5A). Families with significantly 
higher abundance in PDAC patients in both cohorts 
included Enterococcaceae, Fusobacteriaceae, and 
Enterobacteriaceae. In addition, Finnish PDAC patients 
presented higher abundances of Yersiniaceae, Hafniaceae, 

and Campylobacteraceae, whereas Iranian PDAC 
patients presented higher levels of Lactobacillaceae, 
Akkermansiaceae, and Streptococcaceae compared 
to their  respective HCs, among others. Families with 
lower abundance in PDAC patients included Clostridia 
UCG-014, Butyricicoccaceae UCG-009, and Bacilli 
RF39 in both cohorts; Succinivibrionaceae, Clostridia 
vadinBB60, and VadinBE97 in Finnish PDAC patients; 

Fig. 3 Gut microbiota composition and differentially abundant OTUs. A Average composition of the gut microbiota (relative abundance) of FPDAC 
(n = 33), FHC (n = 35), IPDAC (n = 50), and IHC (n = 34) at the phylum, class, family, and genus levels, with the most abundant taxa listed. B Venn 
diagram visualizing unique and shared OTUs between the groups. The bracketed numbers refer to the differentially abundant OTUs in each 
group comparison. FHC, Finnish HC; FPDAC, Finnish PDAC; HC, healthy control; IHC, Iranian HC; IPDAC, Iranian PDAC; PDAC, pancreatic ductal 
adenocarcinoma

Table 2 Beta diversity analysis via PERMANOVA

a pseudo-F is a measure of effect size. The larger it is, the greater the difference in the respective comparison
b p values < 0.05 indicate significant differences in the average community compositions of the compared groups

FHC, Finnish HC; FPDAC, Finnish PDAC; HC, healthy control; IHC, Iranian HC; IPDAC, Iranian PDAC; PDAC, pancreatic ductal adenocarcinoma

Variable Groups Group comparisons pseudo‑F  statistica p  valueb p  valueb

(Bonferroni)

Clinical groups A FPDAC, FHC, IPDAC, IHC FPDAC vs. FHC 2.37449  < 0.0001  < 0.0001

IPDAC vs. IHC 5.13292  < 0.0001  < 0.0001

IPDAC vs. FPDAC 3.88052  < 0.0001  < 0.0001

IHC vs. FHC 3.82313  < 0.0001  < 0.0001

Clinical groups B PDAC (FPDAC + IPDAC),
HC (FHC + IHC)

PDAC vs. HC 5.82668  < 0.0001  < 0.0001

Population origin All Finnish (FPDAC + FHC),
All Iranian (IPDAC + IHC)

All Finnish vs.
All Iranian

5.91189  < 0.0001  < 0.0001
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and unknown Gastranaerophilales, Muribaculaceae, and 
Ruminococcaceae in Iranian PDAC patients (Table  S4, 
Additional file  5). The heatmap of fold differences in 
Fig.  5B illustrates that several families belonging to the 
class Clostridia were present at lower abundances in PC 
in both populations.

Genus‑level differences
At the genus level, we detected 78 taxa in the Finnish 
and 67 taxa in the Iranian cohort, which were differen-
tially abundant between patients and controls (Fig.  5C). 
Among these, 25 taxa overlapped, with 13 genera unique 
to PDAC and 12 shared with other comparisons (Fig. 5C 
and Table  3). The most abundant genera in PDAC in 
both populations included Enterococcus, Sellimonas, 
Veillonella, Klebsiella, Hungatella, Eisenbergiella, Fuso-
bacterium, Enterobacter, Flavonifractor, and Coproba-
cillus. Genera with lower abundance common to both 
populations were Asteroleplasma, Clostridia UCG-014, 
and Butyricicoccaceae UCG-009. Notably, Succinivibrio 
had a greater abundance in Iranian PDAC patients and 
a lower abundance in Finnish PDAC patients, and vice 
versa, the Rikenellaceae RC9 gut group had a greater 
abundance in FPDAC patients but a lower abundance in 

IPDAC patients. Highly enriched genera unique to Finn-
ish patients included Serratia, Succiniclasticum, Citro-
bacter, and Hafnia, and highly depleted genera included 
Butyrivibrio, Alloprevotella, Lachnospiraceae UCG-003, 
and Mailhella. In Iranian patients, Limosilactobacillus, 
Lactobacillus, Pseudomonas, and Acidaminococcus were 
notably more abundant, whereas Muribaculaceae CAG-
873, Elusimicrobium, [Bacteroides] pectinophilus group, 
and Lycinibacillus were notably depleted (Table  S4, see 
Additional file 5). The differential abundance heatmap in 
Fig.  5D highlights selected Clostridia genera with lower 
abundance in PDAC patients compared to HCs, in one 
or both cohorts. These patterns illustrate the consistent 
decline in key butyrate-producing Clostridia across dif-
ferent populations in PDAC.

Differences between the populations
The comparison between Finnish and Iranian PDAC 
patients revealed several distinct differences. At the 
phylum level, Iranian PC vs. Finnish PC presented sig-
nificantly greater abundances of Thermoplasmatota, 
Synergistota, Proteobacteria, Actinobacteriota, and Fir-
micutes (Fig.  4C). At the family level, we observed sig-
nificantly greater abundances of the facultative pathogens 

Fig. 4 Differentially abundant phyla. Phylum-level differences in the gut microbiota between A Finnish FPCAC patients (n = 33) and controls 
(n = 35), B Iranian FPDAC patients (n = 50) and controls (n = 34), and C Finnish and Iranian patients. D Venn diagram of the differentially abundant 
phyla between the groups. FHC, Finnish HC; FPDAC, Finnish PDAC; HC, healthy control; IHC, Iranian HC; IPDAC, Iranian PDAC; PDAC, pancreatic 
ductal adenocarcinoma
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Streptococcaceae, Enterococcaceae, and Lactobacil-
laceae of the Lactobacillales order and several Gam-
maproteobacteria families, such as Pseudomonadaceae, 
Xanthomonadaceae, and Enterobacteriaceae, the lat-
ter of which includes the facultative pathogen E. coli 
(Table  S4, Additional file  5). Conversely, Finnish PDAC 
patients showed significant enrichment of the phyla 
Campylobacteriota, Cyanobacteria, and Bacteroidota; 
the families Bacteroidaceae, Barnesiellaceae, and Rikenel-
laceae within the Bacteroidia class; Monoglobaceae, 
Clostridia vadinBB60 group, and Family XI within the 
Clostridia class; and Helicobacteraceae and Campylobac-
teraceae within the Campylobacteria class, among others 
(Table S4, Additional file 5).

Cohortwise biomarker potential
In addition to differential abundance analysis, we 
assessed the biomarker potential of differential taxa using 
LEfSe, which evaluates biological consistency and effect 
size. Both populations’ PDAC samples were enriched in 
Klebsiella and Hungatella and depleted of Agathobacter, 
Anaerostipes, and Clostridia. Finnish PDAC samples 
were furthermore enriched in Christensenellales, 
Rhodospirillales, Enterobacter, Enterococcus, Citrobacter, 

Campylobacter, and Oscillospira and depleted in 
Prevotella_9, Butyrivibrio, Butyricicoccus, Lachnospira, 
and Romboutsia, among others (Fig.  6A, B). Iranian 
PDAC samples, on the other hand, were enriched 
in Subdoligranulum, Streptococcus, Lactobacillus, 
Limosilactobacillus, Kluyvera, and Pantotea and depleted 
in Faecalibacterium, Bifidobacterium, Dialister, Blautia, 
Roseburia, Parasutterella, and Ruminococcus, among 
others (Fig. 6C, D).

Predicted functions of PC gut microbes and their 
pathway analysis further underline the differences 
between the populations
For the prediction of Kyoto Encyclopedia of Genes 
and Genomes (KEGG) functions, we identified 8,598 
KEGG orthology (KO) term features, of which 6417 
features remained after filtering. Among these, 872 
KOs in Finnish, and 2049 KOs in Iranian PC patients 
were significantly different from their respective HCs 
(FDR < 0.05). Among the 500 most distinctive predicted 
microbial functions in PC, only 40 overlapped between 
the populations (Table S5, Additional file 6). Visualisation 
via a PCA plot (Fig. 7) suggests that particularly Iranian 
cancer patients differed from the other groups. The LEfSe 

Fig. 5 Differentially abundant families and genera. A Venn diagram of differentially abundant families between the groups. B Heatmap 
of differentially abundant families belonging to the class Clostridia. C Venn diagram of differentially abundant genera between the groups. D 
Heatmap of selected differentially abundant genera belonging to the class Clostridia. *FDR p < 0.05. **25 overlapping differential genera in PDAC 
common to both populations are shown in Table 3. FHC, Finnish HC; FPDAC, Finnish PDAC; HC, healthy control; IHC, Iranian HC; IPDAC, Iranian 
PDAC; PDAC, pancreatic ductal adenocarcinoma
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analysis in Fig. 8A displays the top 15 differing predicted 
functions between the groups, clearly illustrating the 
divergences between patients and controls and between 
the populations.

Figure  8B highlights the top four differing predicted 
functions in PDAC patients versus HCs. Clumping factor 
B (K14192), accessory secretory protein Asp3 (K12270), 
and ATP-binding cassette subfamily C (K12292) 
were highly enriched in Iranian patients, and inositol 
transport system permease protein (K17209) was highly 

enriched in Finnish patients. Conversely, highly depleted 
predicted functions included the rsbT antagonist protein 
RsbS (K17762), serine/threonine-protein kinase RsbT 
(K17752), and rsbT coantagonist protein RsbR (K17763) 
in Finnish, and membrane-bound hydrogenase subunit 
alpha (K18016) in Iranian patients. All differential 
predicted functions are detailed in Table  S5 (see 
Additional file 6).

Subsequent pathway analysis revealed that differentially 
expressed predicted KOs involved in benzoate 

Table 3 Differentially abundant genera in PDAC common to both populations

a In descending order of fold differences
b Indicates significantly higher (+) or lower (−) abundance in PDAC in both populations
c See also Venn diagram, Fig. 5C

FHC, Finnish HC; FPDAC, Finnish PDAC; HC, healthy control; IHC, Iranian HC; IPDAC, Iranian PDAC; PDAC, pancreatic ductal adenocarcinoma

Genusa Changeb Taxonomy (phylum/class) Occurrencec

1 Sellimonas  + Firmicutes/Clostridia Unique to PDAC vs. HC in both populations

2 Veillonella  + Firmicutes/Negativicutes

3 Klebsiella  + Proteobacteria/Gammaproteobacteria

4 Eisenbergiella  + Firmicutes/Clostridia

5 Fusobacterium  + Fusobacteriota/Fusobacteriia

6 Enterobacter  + Proteobacteria/Gammaproteobacteria

7 Unknown Enterobacterales  + Proteobacteria/Gammaproteobacteria

8 [Clostridium] innocuum group  + Firmicutes/Clostridia

9 Unknown Enterobacteriaceae  + Proteobacteria/Gammaproteobacteria

10 Anaerotruncus  + Firmicutes/Clostridia

11 Lachnoclostridium  + Firmicutes/Clostridia

12 Butyricicoccaceae UCG-009  − Firmicutes/Clostridia

13 Clostridia UCG-014  − Firmicutes/Clostridia

14 Coprobacillus  + Firmicutes/Bacilli In PDAC vs. HC in both populations
In IPDAC vs. FPDAC15 Cloacibacillus  + Synergistota/Synergistia

16 Unknown Gammaproteobacteria  + Proteobacteria/Gammaproteobacteria

17 Kluyvera  + Proteobacteria/Gammaproteobacteria

18 Bacteroides  + Bacteroidota/Bacteroidia

19 Asteroleplasma  − Firmicutes/Bacilli

20 Enterococcus  + Firmicutes/Bacilli In PDAC vs. HC in both populations
In IPDAC vs. FPDAC
In IHC vs. FHC

21 Erwinia  + Proteobacteria/Gammaproteobacteria

22 Flavonifractor  + Firmicutes/Clostridia

23 Succinivibrio  + / − Proteobacteria/Gammaproteobacteria

24 Hungatella  + Firmicutes/Clostridia In PDAC vs. HC in both populations
In IHC vs. FHC25 Rikenellaceae RC9 gut group  + / − Bacteroidota/Bacteroidia

Fig. 6 Major differential taxonomic features between PDAC patients and healthy controls visualized via a linear discriminant analysis (LDA) effect 
size (LEfSe) cladogram and histogram. The cladogram shows the phylogenetic relationships of differentially abundant taxa for the PDAC groups 
(red) with their controls (green). The size of the nodes is proportional to the taxon’s abundance. In the histogram, positive LDA scores indicate 
enrichment of taxa in the PDAC groups (red) relative to healthy controls (green), and negative LDA scores indicate depletion of the respective 
taxa. A LEfSe cladogram and B LEfSe histogram of FPDAC vs. FHC. C LEfSe cladogram and D LEfSe histogram of IPDAC vs. IHC. Kruskal–Wallis sum 
rank test, p < 0.01, LDA scores (log10) > 4. FPDAC, Finnish PDAC; FHC, Finnish HC; IPDAC, Iranian PDAC; IHC, Iranian HC; HC, healthy control; PDAC, 
pancreatic ductal adenocarcinoma

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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degradation, toluene degradation, and carbon fixation 
pathways in prokaryotes were significantly enriched 
in Finnish patients. In Iranian patients, significantly 
enriched differentially expressed predicted KOs were 
involved in peptidoglycan biosynthesis, galactose 
metabolism, lysine biosynthesis, and furfural degradation 
pathways (FDR-corrected p < 0.05, Table 4 and Table S5, 
Additional file 6).

Statistical modeling for the prediction of PC in the Iranian 
cohort, and prediction performance testing in the Finnish 
cohort
Variable selection methods and model comparison
For generating a PDAC classifier within the Iranian 
cohort, microbial taxa at phylum, family, and genus ranks 
were analysed by Mean Decrease GINI (MDG) using the 
random forest (RF) method (Figure S2, Additional file 7), 
and logistic regression (LR) based on AUC values > 0.7 
(Table S6, Additional file 8). The resulting variables (i.e., 
microbial taxa) were used to build predictive models, 
of which LR demonstrated the highest performance 
(Table  S7, Additional file  9). In the LR model, PDAC-
predicting variables included Firmicutes, Bacteroidota, 
and Cyanobacteria at the phylum level, {Unknown 

Family} Clostridia UCG-014, Enterococcaceae, 
Prevotellaceae, Butyricicoccaceae, Enterobacteriaceae, 
Erysipelatoclostridiaceae, Muribaculaceae, {Unknown 
Family} RF39, and FamilyXI at the family level, and 
Unknown Family Clostridia UCG-014, Anaerostipes, 
Erysipelotrichaceae UCG-003, Lachnospiraceae UCG-
001, Unknown Genus Muribaculaceae, Prevotella_9, 
Agathobacter, Enterococcus, Hungatella, Intestinimonas, 
Enterobacter, Uncultured11, Butyricicoccus, Unknown 
Family RF39, Citrobacter, Lachnospiraceae NK4A136 
group, Uncultured03, Klebsiella, Eubacterium 
xylanophilum group, and Romboutsia at the genus level 
(Fig. 9). These discriminating taxa were used as classifiers 
in the subsequent prediction analysis. As it is the nature 
of microbiota to be distributed rather randomly, not all 
classifier genera were present in all subjects, nevertheless 
each taxon was present in a majority of samples. 
Supplementary Table  S8 (Additional file  10) lists the 
relative abundances of the classifier families and genera. 
In addition, Supplementary Table S8 (Additional file 10) 
displays the differences in read counts of Unknown 
Family Clostridia UCG-014 between patients and 
controls as a prominent proxy for all microbial taxa 
included in the classifier.

Fig. 7 Principal component analysis (PCA) plot of predicted microbial functions grouped according to clinical status and cohort. FPDAC, Finnish 
PDAC; FHC, Finnish HC; IPDAC, Iranian PDAC; IHC, Iranian HC; HC, healthy control; PDAC, pancreatic ductal adenocarcinoma
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Fig. 8 Function prediction. A Linear discriminant analysis (LDA) effect size (LEfSe) analysis showing the 15 functions with the greatest differences 
between PDAC patients and HCs. An LDA score > 3.5 and a false discovery rate (FDR)-corrected p value < 0.05 were considered significant. B 
Log-transformed counts of the top 4 differing predicted functions for FPDAC vs. FHC and IPDAC vs. IHC. Significance was tested using the Mann–
Whitney U test with FDR correction, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Annotations of the KO terms were retrieved from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database. FPDAC, Finnish pancreatic ductal adenocarcinoma (PDAC); FHC, Finnish healthy control; 
IPDAC, Iranian PDAC; IHC, Iranian healthy control
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Prediction performance by the taxonomic ranks of phylum, 
family, and genus
In this step, we evaluated the performance of machine 
learning (ML) models for predicting PDAC across 
different taxonomic ranks, as shown in Fig.  10 and 
Table  5. At the phylum level, total variables, referring 
to all differentially abundant phyla (including 
Elusimicrobiota, Fusobacteriota, Verrucomicrobiota, 
Synergistota, and Proteobacteria), yielded an AUC of 
0.85 (95% CI 0.74–0.95), with a sensitivity of 0.91 and a 
specificity of 0.86, which demonstrates strong predictive 
performance. Models with selected variables showed 
slightly reduced AUCs, with LR and NB both achieving 
AUCs of 0.79 (95% CI 0.68–0.91), and the other models 
achieving lower values. At the family level, LR with total 
variables resulted in a low AUC of 0.50 (95% CI 0.38–
0.63), but with selected variables, LR achieved the highest 
AUC of 0.88 (95% CI 0.78–0.97), with a sensitivity of 0.85 
and a specificity of 0.89. Finally, at the genus taxonomic 
rank, models with all variables performed poorly, with 

LR achieving an AUC of 0.42 (95% CI 0.30–0.54), while 
models employing selected variables showed significantly 
improved performance with SVM achieving the highest 
AUC of 0.87 (95% CI 0.78–0.95), with a sensitivity of 0.79 
and a specificity of 0.80. For detailed results, see Table S7, 
Additional File 9.

Discussion
In this study, we had the unique opportunity to profile the 
PC stool microbiota in two divergent populations —Fin-
land and Iran— with different geographical and sociocul-
tural backgrounds, however, using consistent analytical 
methods. We analyzed the cancer gut microbiota within 
each population and established microbial classifiers for 
predicting PC, that were generated in the Iranian cohort 
and validated in the Finnish cohort.

Our results indicate that PC is associated with a dis-
tinct gut microbial profile. Common features across both 
populations included significantly lower alpha diversity 
indices in PC patients, significant differences in beta 

Table 4 Pathway analysis of the predicted gut microbial functions of Finnish and Iranian PDAC patients

a Number of functions in the respective pathway
b Number of differential functions that map into the respective pathway

FDR, false discovery rate-corrected p value; FPDAC, Finnish PDAC; IPDAC, Iranian PDAC; PDAC, pancreatic ductal adenocarcinoma

Totala Hitsb p value FDR

Predicted functions FPDAC

 Benzoate degradation 86 15 3.30E−06 0.000495

 Toluene degradation 36 9 1.68E−05 0.00126

 Carbon fixation pathways in prokaryotes 97 14 6.66E−05 0.00333

Predicted functions IPDAC

 Peptidoglycan biosynthesis 49 13 2.83E−09 4.25E−07

 Galactose metabolism 58 10 1.49E−05 0.00112

 Lysine biosynthesis 41 7 0.000327 0.0163

 Furfural degradation 6 3 0.000665 0.0249

Fig. 9 Variable importance analysis for pancreatic ductal adenocarcinoma (PDAC) prediction using Area Under the Curve (AUC) 
across the taxonomic ranks phylum, family, and genus
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diversity between the cancer and control groups, and sig-
nificant shifts in the abundance of certain bacterial taxa. 
While the microbial signatures of Finnish and Iranian PC 
patients differed in some respects, they overlapped suf-
ficiently, so that the classifiers created in one cohort was 
successfully used for PC prediction in the other cohort, 
demonstrating a high predictive performance. Fecal 
microbial classifiers have been proposed as noninva-
sive diagnostic and prognostic markers for various can-
cers [41–47], particularly CRC [48, 49], where they have 
been extensively investigated and have reached the clini-
cal trial phase [50–53]. Comparable studies for PC are 
rare, but promising results have recently been obtained 
in a Spanish and two Japanese cohorts, based on 27, 30, 
and 24 differential species, with high AUCs of 0.84 [54], 
0.72 [55], and 0.91 [56], respectively. Our classifiers, con-
sisting of 9 families and 20 genera, aligned with these, 
achieving excellent AUCs of 0.88 (95% CI 0.78–0.97) and 
0.87 (95% CI 0.78–0.95), respectively. Despite its strong 
performance, this method is insufficient for early screen-
ing applications and could be improved by combining it 
with the CA 19–9 marker, as demonstrated previously 
[54, 55]. Further refinement to the species level through 
shotgun sequencing or quantitative real-time PCR could 
increase the predictive accuracy.

The observation of significantly lower phylogenetic 
and alpha diversity indices in PC patients compared 
to HCs aligns with the results of earlier PC studies [55, 
57, 58]. Typically, higher alpha diversity is associated 
with a healthy and stable microbiome due to increased 
microbial functional redundancy [59, 60], and lower 
alpha diversity has been linked to various medical con-
ditions, including cancer [61–65]. However, several 

studies reported a stronger influence of geographical 
or ethnic factors than disease status on alpha diversity 
[66–70], which we could not confirm. We did not find 
any differences in alpha diversity between the popula-
tions, whether we compared patients, controls, or the 
populations as a whole.

Consistent with earlier studies [54–58, 71], beta- or 
interindividual species diversity differed significantly 
between PC and HCs within the populations. Beta 
diversity also differed between the populations, 
which is not surprising and is likely a consequence of 
different host genomes, lifestyles, and dietary habits. 
Interestingly, the differences in beta diversity between 
PC and HCs were more pronounced in the Iranian 
cohort than in the Finnish cohort (pseudo-F = 5.13 
and 2.37, respectively). This could be caused by the 
diverging age distributions between Iranian PC and 
HCs compared with the Finnish cohort, since the 
microbial community composition is known to change 
with age [72]. However, inter-cohort comparisons of 
patients vs. patients and controls vs. controls revealed 
similar beta diversity differences, suggesting the 
effects of factors other than age. In our merged dataset 
including both populations, the differences between 
all PC cases and all HCs had similarly high pseudo-F 
values as those between all Finns and all Iranians. This 
finding indicates equally strong impacts of PC and 
population origin on the gut microbial community 
composition and contrasts with the literature. In a 
study by Half et  al. that compared fecal microbiota 
profiles of Israeli and Chinese PC cohorts, ethnic 
origin had a stronger effect on microbial community 
composition than cancer did [71]. Notably, unlike our 

Fig. 10 ROC curve analysis for PDAC prediction using five Machine Learning methods across the taxonomic ranks phylum, family, and genus. At 
the phylum level, the logistic regression model (95% CI 0.74, 0.95) achieved the best AUC of 0.85. At the family level, the logistic regression model 
(95% CI 0.78, 0.97) reached the highest AUC of 0.88. At the genus level, the SVM model performed best, with an AUC of 0.87 (95% CI 0.78, 0.95). AUC, 
area under the receiver operating characteristic (ROC) curve
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study, the analytical methodologies differed between 
the cohorts [57, 71], which might have influenced their 
outcomes.

Differential abundance analysis revealed characteristic 
compositional features of the PC gut microbiota 
shared by both populations: overrepresentation 
of potentially pathogenic bacteria, such as 
Enterococcaceae, Fusobacteriaceae, Enterobacteriaceae, 

and Veillonellaceae, and underrepresentation of taxa 
associated with healthy gut flora, such as SCFA-
producing Clostridia, which confirms previous findings 
[54–57, 71, 73]. Several overrepresented taxa are 
gram-negative and thus lipopolysaccharide (LPS)-
producing. As components of the outer bacterial 
membrane, LPS interact with the immune system, 
mediating inflammation and participating in various 

Table 5 ROC curve performance metrics for PDAC prediction by taxonomic ranks and machine learning methods

AUC, area under the curve; CI, confidence interval; DT, decision tree; LR, logistic regression; NB, naïve Bayes; NN, neural network; SVM, support vector machine
a “All variables” refers to all differential taxa at the respective taxonomic level, “selected variables” refers to the microbial classifier at the respective taxonomic 
level, determined by logistic regression, with an AUC threshold of  > 0.7 (see also Fig. 9). At the phylum level, Firmicutes, Bacteroidota, and Cyanobacteria were 
included in the classifier. At the family level, {Unknown Family} Clostridia UCG-014, Enterococcaceae, Prevotellaceae, Butyricicoccaceae, Enterobacteriaceae, 
Erysipelatoclostridiaceae, Muribaculaceae, {Unknown Family} RF39, and FamilyXI were selected. At the genus level, the selected variables included Unknown Family 
Clostridia UCG-014, Anaerostipes, Erysipelotrichaceae UCG-003, Lachnospiraceae UCG-001, Unknown Genus Muribaculaceae, Prevotella_9, Agathobacter, Enterococcus, 
Hungatella, Intestinimonas, Enterobacter, Uncultured11, Butyricicoccus, Unknown Family RF39, Citrobacter, Lachnospiraceae NK4A136 group, Uncultured03, Klebsiella, 
Eubacterium xylanophilum group, and Romboutsia
b The highest AUC scores are bolded

Taxonomic 
ranks

Models and 
 variablesa

AUC b
(95% CI)

Sensitivity (95% 
CI)

Specificity (95% 
CI)

Positive 
predictive 
value (95% CI)

Negative 
predictive 
value (95% CI)

Accuracy (95% 
CI)

Phylum LR–all variables 0.85 (0.74, 0.95) 0.91 (0.76, 0.97) 0.86 (0.71, 0.94) 0.86 (0.71, 0.94) 0.91 (0.76, 0.97) 0.87 (0.76, 0.94)

LR–selected vari-
ables

0.79 (0.68, 0.91) 0.82 (0.66, 0.91) 0.80 (0.64, 0.90) 0.79 (0.63, 0.90) 0.82 (0.66, 0.92) 0.79 (0.68, 0.88)

SVM–selected 
variables

0.72 (0.60, 0.85) 0.85 (0.69, 0.93) 0.66 (0.49, 0.79) 0.70 (0.55, 0.82) 0.82 (0.64, 0.92) 0.74 (0.61, 0.83)

NB–selected vari-
ables

0.79 (0.68, 0.91) 0.91 (0.76, 0.97) 0.71 (0.55, 0.84) 0.75 (0.60, 0.86) 0.89 (0.73, 0.96) 0.81 (0.70, 0.89)

NN – selected 
variables

0.66 (0.52, 0.79) 0.67 (0.50, 0.80) 0.69 (0.52, 0.81) 0.67 (0.50, 0.80) 0.69 (0.52, 0.81) 0.68 (0.55, 0.78)

DT – selected 
variables

0.65 (0.53, 0.76) 0.85 (0.69, 0.93) 0.49 (0.33, 0.64) 0.61 (0.46, 0.74) 0.77 (0.57, 0.90) 0.66 (0.54, 0.77)

Family LR –
all variables

0.50 (0.38, 0.63) 0.64 (0.47, 0.78) 0.40 (0.26, 0.56) 0.50 (0.36, 0.64) 0.54 (0.35, 0.71) 0.51 (0.39, 0.64)

LR – selected vari-
ables

0.88 (0.78, 0.97) 0.85 (0.69, 0.93) 0.89 (0.74, 0.95) 0.88 (0.72, 0.95) 0.86 (0.71, 0.94) 0.87 (0.76, 0.94)

SVM – selected 
variables

0.86 (0.77, 0.95) 0.85 (0.69, 0.93) 0.77 (0.61, 0.88) 0.78 (0.62, 0.88) 0.84 (0.68, 0.93) 0.78 (0.66, 0.87)

NB – selected 
variables

0.81 (0.70, 0.92) 0.91 (0.76, 0.97) 0.66 (0.49, 0.79) 0.71 (0.56, 0.83) 0.88 (0.71, 0.96) 0.78 (0.66, 0.87)

NN – selected 
variables

0.84 (0.74, 0.94) 0.73 (0.56, 0.85) 0.86 (0.71, 0.94) 0.83 (0.65, 0.92) 0.77 (0.62, 0.87) 0.79 (0.68, 0.88)

DT – selected 
variables

0.77 (0.65, 0.88) 0.85 (0.69, 0.93) 0.74 (0.58, 0.86) 0.76 (0.60, 0.87) 0.84 (0.67, 0.93) 0.79 (0.68, 0.88)

Genus LR –
all variables

0.42 (0.30, 0.54) 1.00 (0.90, 1.00) 0.00 (0.00, 0.10) 0.49 (0.37, 0.60) NA (NA, NA) 0.49 (0.36, 0.61)

LR – selected vari-
ables

0.82 (0.71, 0.93) 0.82 (0.66, 0.91) 0.83 (0.67, 0.92) 0.82 (0.66, 0.91) 0.83 (0.67, 0.92) 0.81 (0.70, 0.89)

SVM – selected 
variables

0.87 (0.78, 0.95) 0.79 (0.62, 0.89) 0.80 (0.64, 0.90) 0.79 (0.62, 0.89) 0.80 (0.64, 0.90) 0.79 (0.68, 0.88)

NB – selected 
variables

0.75 (0.62, 0.88) 0.76 (0.59, 0.87) 0.80 (0.64, 0.90) 0.78 (0.61, 0.89) 0.78 (0.62, 0.88) 0.78 (0.66, 0.87)

NN – selected 
variables

0.83 (0.73, 0.93) 0.73 (0.56, 0.85) 0.86 (0.71, 0.94) 0.83 (0.65, 0.92) 0.77 (0.62, 0.87) 0.79 (0.68, 0.88)

DT – selected 
variables

0.85 (0.75, 0.94) 0.82 (0.66, 0.91) 0.83 (0.67, 0.92) 0.82 (0.66, 0.91) 0.83 (0.67, 0.92) 0.82 (0.71, 0.91)
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pathogenic processes [74, 75]. In PC cells, LPS have 
been shown to activate the PI3K/Akt/mTOR pathway, a 
known oncogenic driver [76]. This provides a plausible 
mechanism by which the overrepresented gram-negative 
bacteria in PC could activate an oncogenic pathway 
and contribute to tumorigenesis. The most enriched 
phylum in PC in both populations, the gram-negative 
Fusobacteriota, contains the oral opportunistic pathogen 
Fusobacterium nucleatum, which is considered a crucial 
factor in CRC tumorigenesis and progression [77]. 
Enriched levels of F. nucleatum have been detected in 
PC saliva [78], gut microbiota [54, 56, 73], and tumor 
tissue [79] and might therefore play important roles 
in PC tumorigenesis too. Another prominent phylum 
associated with PC is the gram-negative Proteobacteria 
[56, 80], which comprises the known pathogens E. 
coli, Shigella, Klebsiella, Enterobacter, Salmonella, and 
Yersinia, among others. Notorious for their involvement 
in inflammation and disease [81], Proteobacteria have 
been associated with metabolic disorders and IBD 
[81, 82], as well as different types of cancer, including 
PC [83–86]. The enriched Proteobacteria families 
in Finnish patients consisted of Yersiniaceae and 
Hafniaceae, whereas those in Iranian patients included 
Xanthomonadaceae and Pseudomonadaceae, the latter 
of which have also been detected in PC tissue [80, 87]. 
Confirming earlier findings in the PC gut microbiota 
[80], the gram-negative facultative pathogen Synergistota 
was enriched in PC in both populations. Gram-negative 
Campylobacterota, including the pathogens Helicobacter 
and Campylobacter, were enriched in Finnish PC only 
and have both been associated with cancer [85, 88, 89]. 
Streptococcaceae, which include the oral pathogen 
Streptococcus and which have been linked to malignancies 
such as CRC and gastric cancer [90–93], were enriched 
in Iranian PC, which aligns with findings in Japanese 
PC cohorts [55, 58, 94, 95]. Furthermore, beneficial but 
potentially pathogenic Lactobacillaceae  [96–98 and 
Akkermansiaceae [99, 100] were enriched in Iranian PC, 
which is consistent with findings in Spanish [54]  and 
Japanese [55, 94, 95], and in Spanish [54], Israeli [71], 
and Greek [73] PC cohorts, respectively. Interestingly, 
Lactobacillus and Akkermansia have also been detected 
in PC tumor tissue [54, 73], suggesting a possible 
involvement in PC tumorigenesis and progression.

The taxa depleted in PC in both cohorts included 
Bacilli RF39, which are beneficial as putative produc-
ers of acetate and hydrogen [101], and members of the 
Clostridia class (see Fig.  5B and Table  S4, Additional 
file  5). Several studies have reported an underrepresen-
tation of butyrate-producing Clostridia in cancer [30, 
102–105], including PC [55, 58, 71] (see also Supple-
mentary Table S9, Additional file 11, for an overview of 

recent PC-related microbiota studies). Selected members 
of this class can modulate inflammation [106] and sup-
port anticancer immune responses [30].  The Clostridia 
Eubacterium and Anaerostipes, depleted in CRC [30] 
and PC [55–57, 71, 94, 95], have been utilized as effective 
antitumor treatments in CRC mouse models [30]. These 
genera were also depleted in Iranian patients, suggesting 
that they might have comparable antitumor capacities 
in PC. Conversely, Peptostreptococcus stomatis has been 
found overrepresented in CRC [107] and has also been 
associated with a greater tumor burden in CRC [30]. We 
observed higher levels of Peptostreptococcales-Tissierel-
lales family members in PC, namely, Finegoldia in Finn-
ish patients and Mogibacterium and Clostridioides in 
Iranian patients. These genera might carry out analogous 
cancer-promoting functions in PC as P. stomatis does 
in CRC. Since the abovementioned Clostridiales strains 
may play crucial roles in PC, future efforts in developing 
gut microbiota supplementation therapies for PC should 
focus on these microbes, aiming to restore a healthy gut 
microbiome and potentially impede cancer progression.

A comparison of the microbial profiles between 
the populations revealed both similarities and clear 
differences. With respect to large-scale community 
composition, distinct differences were noted in the 
dominant phyla Bacteroidota and Firmicutes. In 
both cohorts, the relative abundance of Bacteroidota 
was greater, whereas that of Firmicutes was lower, 
in PC compared to HCs. A shift in the Firmicutes 
to Bacteroidota (F/B) ratio has been associated with 
dysbiosis [108], and decreased F/B ratios have been 
observed in several types of cancer [109–112], including 
PC [56, 57, 71]. In this study, the F/B ratio was 30.0% lower 
in the Finnish cohort (F/BFPDAC = 1.03; F/BFHC = 1.47) 
and 25.3% lower in the Iranian cohort (F/BIPDAC = 1.92; 
F/BIHC = 2.57) in patients than in their respective 
controls (Table  S2, Additional file  3). Interestingly, in 
the differential abundance analysis, Bacteroidota was 
significantly enriched, and Firmicutes was significantly 
depleted in Finnish PC compared with Iranian PC, likely 
due to varying lifestyles, particularly dietary habits. 
Accordingly, Bacteroides, the most dominant bacterial 
genus in the gut, had a significantly greater abundance 
in Finnish PC than in Iranian PC. Higher Bacteroides 
abundance has been linked to a Western-type lifestyle 
characterized by a diet rich in protein and animal fats 
[113], which may explain the higher levels of Bacteroides 
in Finnish patients. Finns typically consume a diet high 
in animal fats and processed meats, with pork, chicken, 
and beef as primary protein sources and potatoes 
and wheat as primary carbohydrate sources [114]. In 
contrast, Iranians predominantly consume rice, often 
twice daily, and exclude pork in favour of mutton, owing 



Page 19 of 24Sammallahti et al. Gut Pathogens           (2025) 17:24  

to cultural and religious reasons [115, 116]. In addition to 
the differences in the two dominant phyla, the third and 
fourth most abundant phyla in the gut, Proteobacteria 
and Actinobacteriota, also exhibited significant 
differences between the populations, with notably higher 
abundances in Iranian patients than in their Finnish 
counterparts. These differences might likewise be 
attributable to dietary variations. Actinobacteriota have 
been positively associated with the intake of resistant 
starch [117], which is found in foods such as legumes and 
cooked and cooled rice [118], as well as the consumption 
of fermented dairy products [119]. Proteobacteria on 
the other hand have been reported to increase with the 
consumption of red meat [120], the intake of a calorie-
dense, high-fat, low-fibre diet [121], and, consequently, 
obesity [122]. However, increased levels of these phyla 
may also reflect population-specific PC dysbiosis. 
Several Actinobacteriota genera enriched in Iranian 
versus Finnish PC belong to the oral microbiome and 
are involved in oral infections, e.g., Actinomyces [123], 
Scardovia [124], and Rothia [125], or are otherwise 
pathogenic, e.g., Eggerthella [126]. A noteworthy 
member of the Actinobacteriota, Bifidobacterium, 
which was enriched in Iranian versus Finnish PC, is 
known for its beneficial effects on the gut microbiome, 
is used as a probiotic [127], and promotes antitumor 
immunity [128]; however, in rare cases, this genus can 
act as a pathogen that causes bacteremia, particularly in 
immunocompromised individuals [129]. Bifidobacterium 
has previously been detected in PC tumor tissue [54], 
in the gut microbiota [73], in the duodenal fluid [130], 
and in the vermiform appendix [131] of PC patients, 
indicating its possible involvement in PC tumorigenesis.

Other major factors influencing the gut microbiome 
include alcohol and tobacco consumption, which lead to 
shifts in microbial community composition towards dys-
biosis and decreased microbial diversity [132–134]. For 
cultural and religious reasons, alcohol consumption var-
ies significantly between the countries, with a markedly 
higher per capita alcohol consumption of 9.2 L in Finland 
compared to 0.7 L in Iran in 2019 [135]. In our cohorts, 
over 60% of patients and over 50% of HCs in the Finn-
ish, but only approximately 4% of patients and 9% of con-
trols in the Iranian cohort reported alcohol consumption. 
Similarly, smoking habits differ between the two coun-
tries, with reported tobacco use by 17% of Finns and 9% 
of Iranians in 2020 [136], and were also distinct between 
our study populations, albeit less dramatically. These 
differences in alcohol and tobacco consumption likely 
contributed to the divergent microbial profiles observed 
between the populations.

The microbial function prediction analysis further 
highlighted the overall diversity between the populations 

while also demonstrating similar trends. Notably, two 
of the most enriched predicted functions, subfamily 
C and inositol transport system permease protein, are 
linked to ATP-binding cassette (ABC) transporters. ABC 
transporters mediate multidrug resistance [137, 138], 
play critical roles in the virulence of several microbial 
pathogens [139], and have been associated with cancer 
[140, 141]. Additionally, two significantly enriched 
predicted functions in Iranian PC are linked to the 
pathogen Staphylococcus aureus: clumping factor B, 
a virulence factor in S. aureus infection [142, 143], and 
accessory secretory protein Asp3, which is involved in 
the export of surface glycoproteins in S. aureus and other 
gram-positive bacteria [144]. S. aureus infection has 
been associated with an increased risk of primary cancer, 
including PC, possibly caused by tumor-associated 
immune suppression [145]. In contrast, three of the 
top decreased differential functions in Finnish PC are 
related to environmental stress signalling in Bacillus 
subtilis: the serine/threonine-protein kinase RsbT, the 
RsbT antagonist protein RsbS, and the RsbT coantagonist 
protein RsbR [146–148]. B. subtilis is a beneficial microbe 
known for modulating host metabolite pathways [149] 
and boosting immunity [150]. Since these microbial 
functions are predictions only based on 16S rRNA gene 
amplicon sequencing, further functional studies are 
needed to confirm these results.

Pathway analysis revealed PC-linked enrichment of 
pathways related to the biosynthesis of peptidoglycan 
and lysine; galactose metabolism; carbon fixation in 
prokaryotes; and the degradation of benzoate, toluene, 
and furfural. Peptidoglycan, a critical component of the 
bacterial cell wall, and lysine, an essential amino acid and 
protein precursor, are fundamental to bacterial growth. 
The enrichment of these pathways might be linked to 
the increase in peptidoglycan-producers, that is, gram-
positive bacteria. Gram-positive microbes, such as 
enterococci, staphylococci, and streptococci have been 
shown to be the main responsible for invasive bacterial 
disease in cancer patients [151]. In our case, the cancer 
patients had higher abundances of enterococci. Galactose 
metabolism involves the fermentation of galactose 
into lactic acid, a process carried out by various gut 
microbes, especially lactic acid bacteria (LAB), such as 
Lactobacillus [152]. The enrichment of this pathway is 
likely associated with the increased Lactobacillaceae 
in Iranian PC compared with HCs. Carbon fixation is 
a key process in autotrophic organisms such as plants 
and cyanobacteria [153], but it has also been detected 
in heterotrophic E. coli [154]. Therefore, the enrichment 
of this pathway might be associated with an increase in 
opportunistic pathogenic anaerobes such as E. coli. The 
enrichment of pathways related to the biodegradation of 
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toluene, benzoate, and furfural may be associated with 
increased xenobiotics intake through smoking [155] 
and the consumption of processed foods, as sodium 
benzoate is widely used as a food preservative [156, 157]. 
Overall, microbial function prediction and pathway 
analysis underscore distinct microbial features between 
the populations, likely driven by different lifestyles and 
dietary habits.

This study had some limitations that should be taken 
into consideration. Since pancreatic cancer is a relatively 
rare disease, and only a fraction of patients undergo 
surgery, the number of available samples was limited, 
which caused low statistical power in the analyses. Due 
to organizational circumstances, also healthy controls 
were limited and did not match the patients 1:1 across 
all clinical and lifestyle parameters. For example, age and 
smoking status differed significantly between Iranian 
patients and controls. To mitigate these imbalances, we 
applied corrections in the differential abundance analysis. 
Moreover, patients and HCs had comorbidities to vary-
ing extents, which were difficult to control for. Another 
limitation of this study was the fact that stool sampling 
differed between our cohorts. We attempted to minimize 
these differences by treating the Iranian samples similarly 
to the Finnish ones before DNA extraction, as described 
in the methods section. Concerning storage conditions, 
they varied between the cohorts. However, for practi-
cal reasons all samples were stored at − 20 °C for at least 
five months before DNA extraction, which is not ideal 
for stool samples but increases consistency. As a major 
strength of this study, DNA extraction and subsequent 
microbial analyses were performed simultaneously using 
identical methods in both populations, thereby reduc-
ing methodological impacts on population differences. 
To reinforce our findings, larger cohorts in both popu-
lations are needed, and validation of the microbial clas-
sifiers in large public datasets of healthy individuals and 
patients with PC and other medical conditions from vari-
ous populations and geographic backgrounds is essential 
in future studies. Despite these shortcomings, our study 
adds very valuable insights to the present knowledge on 
pancreatic cancer microbiota, especially in terms of pop-
ulation differences.

Conclusion
Our study identified a distinct gut microbial profile for 
patients with pancreatic cancer (PC) that was independ-
ent of patients’ geographic or cultural backgrounds. 
We observed consistent trends in PC-related micro-
bial diversity and community composition in our two 
populations—Finnish and Iranian—with profoundly 
different environments and lifestyles. These findings 
suggest that the gut microbiota plays a crucial role in 

the development of PC, likely through the increased 
prevalence of pathogenic microbes with proinflamma-
tory and tumor-promoting functions and the depletion 
of protective microbes, such as butyrate- and other 
short-chain fatty acid- (SCFA-) producers. Moreover, 
we show that this unique microbial profile has potential 
as a classifier for PC and could be used for noninvasive 
early PC screening. However, further refinement and 
validation in larger, more diverse cohorts are necessary 
to enhance its predictive accuracy. Finally, the results 
of our differential abundance analysis, particularly the 
depletion of Clostridia, offer promising future ave-
nues for developing novel treatment strategies for PC. 
These could involve the integration of next-generation 
probiotics alongside conventional chemotherapeutic 
drugs, potentially offering a more targeted and effective 
approach to managing this challenging disease. Future 
research should explore these therapeutic possibili-
ties, aiming to translate microbial insights into clinical 
interventions.
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